Background: Trunk movements are an important factor in activities of daily living; however, these movements can be impaired by stroke. It is difficult to quantify and measure the active range of motion (AROM) of the trunk in patients with stroke.
Objects: To determine the reliability and validity of measurements using a digital goniometer (DG) and smart phone (SP) applications for trunk rotation and lateral flexion in stroke patients. Methods: This is an observational study, in which twenty participants were clinically diagnosed with stroke. Trunk rotation and lateral flexion AROM were assessed using the DG and SP applications (Compass and Clinometer). Intrarater reliability was determined using intraclass correlation coefficients (ICCs) with 95% confidence intervals. Pearson correlation coefficient was used to determine the validity of the DG and SP in AROM measurement. The level of agreement between the two instruments was shown by Bland–Altman plot and 95% limit of agreement (LoA) was calculated.
Results: The intrarater reliability (rotation with DG: 0.96–0.98, SP: 0.98; lateral flexion with DG: 0.97–0.98, SP: 0.96) was excellent. A strong and significant correlation was found between DG and SP (rotation hemiplegic side: r = 0.95; non-hemiplegic side: r = 0.90; lateral flexion hemiplegic side: r = 0.88; non-hemiplegic side: r = 0.78). The level of agreement between the two instruments was rotation (hemiplegic side: 23.02° [LoA 17.41°, –5.61°]; non-hemiplegic side: 31.68° [LoA 23.87°, –7.81°]) and lateral flexion (hemiplegic side: 20.94° [LoA 17.48°, –3.46°]; non-hemiplegic side: 27.12° [LoA 18.44°, –8.68°]).
Conclusion: Both DG and SP applications can be used as reliable methods for measuring trunk rotation and lateral flexion in patients with stroke. Although, considering the level of clinical agreement, DG and SP could not be used interchangeably for measurements.
The purpose of this study were to determine the intra-rater and inter-rater reliability of shoulder
passive range of motion measurement using the “Clinometer + bubble level”, a smartphone application and to compare with the intra-rater and inter-rater reliability of measurement using a goniometer. Twenty six patients with stroke were recruited for this study. Two raters measured the passive range of motion of four types of shoulder movements (forward flexion; FF, abduction; ABD, external rotation at 90° abduction; ER90 and internal rotation at 90° abduction; IR90) using a goniometer and a smartphone to determine within-day inter-rater reliability. A retest session was performed thirty minutes later to determine within-day intra-rater reliability. The reliability was assessed using intraclass correlation coefficients (ICC) and the standard error of measurement (SEM). The ICC (2,1) for the inter-rater reliabilities of the goniometer and smartphone were good in FF and ABD [ICC (2,1)=.75∼.87] and excellent in ER90 [ICC (2,1)=.90∼.95]. The intra-rater reliabilities for the goniometer and smartphone were good or more than good, with an ICC (3,1) value >.75, the exception was IR90 measured by rater 2 on the smartphone. These results suggest that smartphone could be used as an alternative method tool for measurement of passive shoulder range of motion in patients with stroke.
The purpose of this study was to assess the intra-rater test-retest reliability of tibial external rotation angle measurement using a smartphone-based photographic goniometer, DrGoniometer (DrG) compared to a three-dimensional motion analysis system (Vicon). The current study showed an interchangeable method using DrG to measure the tibial external rotation angle in standing knee flexion at . Twelve healthy subjects participated in this study. A rest session was conducted 30 minutes later for within-day reliability and five days later for between-day intra-rater test-retest reliability. To assess the validity of the measurement using DrG, we used a three dimensional motion analysis system as a gold standard to measure the angle of tibial external rotation. Intra-class correlation coefficient (ICC) and the standard error of measurement (SEM) values were used to determine the within- and between- day intra-rater test-retest reliability of using DrG and a three dimensional motion analysis system. To assess validity, Pearson correlation coefficients were used for two measurement techniques. The measurement for tibial external rotation had high intra-rater test-retest reliability of within-day (ICC=.88) and between-day (ICC=.83) reliability using DrG and of within-day (ICC=.93) and between-day (ICC=.77) reliability using a three-dimentional motion analysis system. Tibial external rotation angle measurement using DrG was highly correlated with those of the three-dimensional motion analysis system (r=.86). These results represented that the tibial external rotation angle measurement using DrG showed acceptable reliability and validity compared with the use of three-dimensional motion analysis system.
The purpose of this study was to investigate the reliability and validity of goniometer measurements of the hallux valgus angle (HVA) compared to radiographic measurements, which are the current standard. Twenty subjects (10 female, 10 male) were recruited for this study (40 feet). The HVA of the subjects was measured using goniometer and radiographic measurement. In three trials, measurements were taken of each subject by two examiners using goniometer and radiographic measurements using radiography in a standing position. The reliability of the measurements was investigated using intraclass correlation coefficients (ICC(3,1)), and the validity was tested using the Pearson product-moment correlation coefficient and an independent t-test. The intra-rater reliability of left and right HVAs were poor (ICC=.409 and .341, respectively). The inter-rater reliability of left and right HVAs were poor and moderate (ICC=.303 and .501, respectively). Left and right HVAs measured using goniometer and radiographic measurements were also poor and moderate (Pearson r=.246 and .544, respectively). These results suggest that goniometer measurements of the HVA are inaccurate and have unacceptable validity compared to radiographic measurements.