살리실산은 식물의 생장 및 발달, 항산화 방어기작, 광합성 작용 그리고 생물적 및 비생물적 스트레스 조건에서 다양한 생리적 기능을 조절하는 물질로 알려져 있다. 본 연구에서는 고온・건조 스트레스 조건에서 살리실산 경엽처리가 고추의 생육, 광합성 특성 및 항산화효소 활성에 미치는 영향을 구명 하고자 하였다. 광합성 특성 측정결과 광합성 속도, 기공전도 도 및 증산 속도가 증가하였고, 3회차 처리에서 가장 높았다. 세포내 MDA와 H2O2 함량은 살리실산 3회차 처리에서 현저 하게 감소하는 경향을 보였다. APX, CAT, POD 및 SOD 활 성이 현저하게 증가하였으며, 무처리 대비 최대 247, 318, 55 및 54% 증가하였다. 고추의 생육 특성은 무처리구와 유의한 차이를 보이지 않았으나, 상품 수량은 15% 정도 증가하였다. 이러한 결과들을 종합해 볼 때, 살리실산의 경엽처리는 고추 의 광합성 특성과 항산화효소 활성을 증진시켜 고온・건조 스트 레스에 의한 피해 경감에 긍정적 효과를 유발함을 확인하였다
본 실험은 고온기 파프리카 재배에서 CaCl2 엽면 살포에 의한 배꼽썩음과 발생과 경감 효과를 알아보고자 과실 크기에 따른 살포 시기, 횟수 및 시간에 미치는 영향을 구명하였다. CaCl2(Ca 0.4%) 엽면 살포는 6월 3일 부터 7월 1일 까지 방아다리 위 4-9 마디의 착과 과실과 잎에 식물체 1주당 350mL/ 회를 처리하였다. CaCl2를 7일 간격으로 4주간 엽면 살포 후 수확한 파프리카의 Ca 함량은 배꼽썩음과 과실의 과폭 11- 20mm 처리에서 가장 낮았고, pedicel > stem-end > middle, blossom-end 순으로 낮아졌다. 정상과 과실의 Ca 함량은 과폭 31-40mm 처리에서 뚜렷하게 증가하였고 배꼽썩음과와 비교할 때 78% 높았다. 과폭 21mm 이상의 과실 middle과 blossom-end 부위 Ca 함량은 정상과에서는 19.8%-28.8% 였으며, 배꼽썩음과에서는 15.7%-18.5%였다. 과폭 31- 40mm 처리에서 배꼽썩음과 발생율은 60% 이상으로 급격히 증가하였다. 과폭 크기별 엽면 살포 처리에 따른 파프리카 과중은 차이가 없었으며, 상품과율은 21-30mm 크기에서 가 장 높았고, 당도는 과폭 11-30mm 처리에서 높았다. 과폭 21 -30mm 파프리카에 7일 동안 CaCl2를 3회 엽면 살포하였을 때 세포벽 결합(cell wall-bound, CWB) Ca 함량은 가장 높았고, 배꼽썩음과 발생율은 6.3%로 가장 낮았다. CaCl2 엽면 살포 처리 10일 후 파프리카의 CWB Ca 함량은 대조구에 비해 모든 처리에서 2.9배-3.5배 증가하였다. 하루 중 1회 시간을 달리하여 CaCl2 엽면 살포하였을 때, 7일째 엽소현상이 오전 9시 30분 처리에서 부터 오후 17시 처리 까지 관찰되었고, proline 함량은 처리 시간이 늦어질수록 증가되었다. 따라서 파프리카 여름재배시 배꼽썩음과 발생 경감을 위한 CaCl2 엽면 살포 방법은 과폭 21-30mm인 시기에 3일 간격으로 2회 -3회, 오전 8시 이전에 살포 하는 것이 적합하리라 본다.
Development of high temperature polymer electrolyte membranes (HT-PEM) in the fuel cell vehicles is investigated in this study. At first, the issues in HT-PEM mainly are dealt with the limitation of fluorinated and sulfonated membranes. Perovskite oxide-type structures functionalized with ligands via coordination chemistry are also emphasized in this study. Potential features of these membranes, including high proton conductivity, hydration of the membranes, and relatively low cost are discussed. The drawbacks of membranes modified with various organic and inorganic materials are also emphasized. The possibility of achieving significant increases in the proton transfer, and hydration of perovskite oxide–organic polymer membranes for use above 100℃ is deeply discussed. Modification of HT-PEM may confer remarkable properties for vehicles with environment friendly.
본 연구에서는 플라이애시가 90 %만큼 다량치환된 모르타르에 알칼리 활성화를 통한 강도증진을 동일한 양생온도 조건 에서 양생방법 및 유지시간 변화에 따라 비교 분석하고자 하였다. 연구 결과로 플래이애시를 90 % 치환한 경우, 소생재 도 포 후 40℃로 24시간 기중양생시 가장 높은 압축강도를 발휘하였지만, OPC의 압축강도까지 발휘하는 것은 어려울 것으로 분석되었다.
본 연구에서는 플라이애시가 다량치환된 모르타르에 알칼리 활성화를 통한 강도증진을 양생온도 및 양생방법 변화에 따라 비교 분석하였다. 연구 결과로 플라이애시를 60 % 과다치환한 경우 소생재 도포 후 40℃의 온도로 48시간 기중양생을 실시한다면 OPC의 28일 압축강도에 근접하게 발휘되는 것이 얻어졌다.
To achieve energy efficiency improvement is used to lower temperature for emission gas at catalyst inlet, or to reduce/stop using steam to reheat emission gas. Saved energy from this process can be used as power source in order to increase generation efficiency. Dry emission gas treatment, on the other hand, is the technology to increase generation efficiency by using highly efficient desalination materials including highly-responsive slaked lime and sodium type chemicals in order to comply with air pollution standards and reduce used steam volume for reheating emission gas. If dry emission gas is available, reheating is possible only with the temperature of 45℃ in order to expect generation efficiency by reducing steam volume for reheating. Retention energy of emission gas from combustion is calculated by emission gas multiplied by specific heat and temperature. In order to obtain more heat recovery from combustion emission gas, it is necessary to reduce not only exothermic loss from boiler facilities but emission calorie of emission gas coming out of boiler facilities. In order to reduce emission calorie of emission gas, it is efficient to realize temperature lowering for the emission gas temperature from the exit of heat recovery facility and reduce emission gas volume. When applying low temperature catalysts, the energy saving features from 0.03% to 2.52% (average 1.28%). When increasing the excess air ratio to 2.0, generation efficiency decreases by 0.41%. When the inlet temperature of the catalyst bed was changed from 210℃ to 180℃, greenhouse gas reduction results were 47.4, 94.8, 118.5, 142.2 thousand tons-CO2/y, CH4 was calculated to be 550.0, 1100.1, 1375.1, 1650.1 kg-CH4/y, and N2O was 275.0, 550.0, 687.6, 825.1 kg-N2O/y. In the case of high efficiency dry flue gas treatment, reduction of greenhouse gases by the change of temperature 120~160℃ and exhaust gas 5,000 ~ 6,500 ㎥/ton is possible with a minimum of 355,461 ton/y of CO2 and minimum 4,125 tons of CH4/y to a maximum of 6,325 ton/y and N2O to a minimum of 2,045 kg/y to a maximum of 3,135 kg/y.
Background : Heat stress induced from high temperature are known to crucially affecting on physiological properties and yield in Cnidium officinale. Methods and Results : The effect of foliar application of mixture including a urea, ascorbic acid and calcium chloride on high temperature injury of Cnidium officinale. Photosynthesis and leaf temperature in Cnidium officinale were investigated after cultivating for 24 hours at 35℃. Net photosyntheis rate, transpiration was measured at 1,000 μmol m-2 s-1 of photon flux density and leaf temperature was analyzed by thermal image. Net photosyntheis rate, stomatal conductance and transpiration rate in mixture traetment were 2 times of higher than in control. Water use efficience was not different significantly. Leaf temperature was lower in mixture treatment (25.3℃) than in control (29.0℃). Conclusion : This result show that foliar application of urea, ascorbic acid and calcium chloride was reducing a high temperature injury through a improving photosynthetical capacity and decreasing leaf temperature of Cnidium officinale.
As of 2013, approximately 253 domestic incineration facilities including incineration facilities for municipal waste and industrial wastes were collected. The distribution of domestic incineration heat through these incineration facilities is estimated to reach about 1,756 thousands toe by 2013. In this study, a high temperature and pressure boiler was applied to evaluate the improvement effect of power generation efficiency of waste incineration facilities. It is possible to increase the power generation efficiency of the steam turbine by increasing the heat loss of the turbine through the high temperature and pressure depending on the steam pressure and the temperature. The boiler main steam amount is reduced by about 10% due to the high temperature and pressure, but the increase rate of the heat fall rate is larger than the decrease rate of the steam flow rate, so that the power generation efficiency is improved. In case of steam temperature, the steam temperature is increased by 50 ℃ at 500 ℃ and 20 kg/㎠ at the pressure of 20 kg/㎠×300 ℃, and it is increased by 10 kg/㎠ to 60 kg/㎠, electricity production changes were investigated. Electricity production increased with increasing temperature and pressure. The electricity production increased by 51.03 % at 40 kg/㎠×400 ℃ and by 89.07 % at 60 kg/㎠×500 ℃, compared to the standard condition of 20 kg/㎠×300 ℃ for comparison. The boiler main steam amount is reduced by about 10 % due to the high temperature and pressure, but the increase rate of the heat fall rate is larger than the decrease rate of the steam flow rate, so that the power generation efficiency is improved. In case of steam temperature, the steam temperature is increased by 50 ℃ at 500 ℃ and 20 kg/㎠ at the pressure of 20 kg/㎠×300 ℃, and it is increased by 10 kg/㎠ to 60 kg/㎠. Electricity production changes were investigated. Electricity production increased with increasing temperature and pressure. The electricity production increased by 51.03 % at 40 kg/㎠×400 ℃ and by 89.07 % at 60 kg/㎠×500 ℃, compared to the standard condition of 20 kg/㎠×300 ℃ for comparison.