The Automobile HVAC system is a habitat for odor-associated fungal communities. We investigated the odorassociated fungal community in an automobile HVAC system using a high-throughput DNA sequencing method. The fungal community structure was evaluated via metagenome analysis. At the phylum level, Ascomycota and Basidiomycota were detected, accounting for 43.41% and 56.49% of the fungal community in the HVAC system, respectively. Columnosphaeria (8.31%), Didymella (5.60%), Davidiella (5.50%), Microxyphium (4.24%), unclassified Pleosporales (2.90%), and Cladosporium (2.79%) were abundant at phylum of Ascomycota and Christiansenia (36.72%), Rhodotorula (10.48%), and Sporidiobolus (2.34%) were abundant at phylum of Basidiomycota. A total of 22 genera of fungi were isolated and identified from the evaporators of the HVAC systems which support fungal growth and biofilm formation. Among them, Cladosporium, Penicillium, Aspergillus and Alternaria are the most representative odor-associated fungi in HVAC systems. They were reported to form biofilm on the surface of HVAC systems with other bacteria by hypha. In addition, they produce various mVOCs such as 3-methyl-1-butanol, acetic acid, butanoic acid, and methyl isobutyl ketone. Our findings may be useful for extending the understanding of odor-associated fungal communities in automobile HVAC systems.
Background : Mulberry (Morus alba L.), renowned for their medicine benefits and the leave as the sole food for silkworm (Bombyx mori). To understanding the molecular mechanism of color formation and nutritive value in different mulberry fruit varieties, we use high-throughput transcriptome sequencing technique to investigated the anthocyanin and betulinic biosynthesis pathway related functional genes. In addition, the total antosyanin and betuinic acid contend were also measured. Methods and Results : The resulting cDNA library was then sequenced using an Illumina HiSeq™ 2000 system. The clean reads were assembled using Trinity software, Then perform gene family clustering to get final unigenes. The pH differential method was used to determine the total anthocyanin content (TAC) of methanol extract from the red and white mulberry, and High-performance liquid chromatography (HPLC) analysis was used to quantify the triterpenes content. In this study, total 50,149 unigenes with an average length of 1,125 nt and N50 equaling 1,861 nt were generated. Using these transcriptome sequecing, cDNAs encoding anthocyanin biosynthetic genes and triterpene biosynthetic genes were isolated. In addition, total anthocyanins and betulinic acid content were analyzed. A great amount of total anthocyanins (59.16 mg/g) were found in fully ripe fruit of Cheongil. Accumulation of betulin and betulinic acid were also detected in all stages of Cheongil and Turkey fruits with small amount. Conclusion : The results of transcriptome sequencing provide useful information at molecular lever in mulberry research, such as interesting gene discovering, marker assisted molecular breeding, and interesting metabolic pathway investigate. The gene expression results could help us understanding of the molecular mechanisms of different fruit color determining factor.
Currently, the type of short insertions and deletions (InDels) polymorphisms are increasingly focused in genomic research. InDels have been known as a source of genetic markers that are widely spread across the genome. Genetic relationship among Korean pear cultivars compared with their parents was also identified that they are closely related P. pyrifolia, P. ussuriensis and/or hybrids between two species. Lack of genetic resources including molecular markers has made it difficult to study pears severely. Recently developed next generation sequencing (NGS) platforms offer opportunities for high-throughput and inexpensive genome sequencing and rapid marker development. The main goal of this study was to develop polymorphic InDel markers in ‘Whangkeumbae’ and ‘Minibae’, which were chosen as the representative cultivars of P. pyrifolia and P. ussuriensis × pyrifolia in each among Korean pears using genomic sequences generated by NGS technology. In this study, more than 18.6 Gbp and 15.8 Gbp sequences were obtained from NGS of ‘Whangkeumbae’ and ‘Minibae’, respectively. ‘Whangkeumbae’ contained 197,210 InDels and 197,272 InDels in ‘Minibae’. In InDels validations between ‘Whangkeumbae’ and ‘Minibae’, the number of polymorphic InDels were 149,338 and non-polymorphic InDels were 122,572. For InDel primer set designing, 11,308 of primers were designed from polymorphic InDels and 10,919 of InDel primers were recommended. The study shows that the utility of NGS technology to design amount of efficient InDels and the developed InDel primers will be used for genetic mapping, breeding by marker assisted selection (MAS) and QTL mapping of Korea native pear as well as further genetic studies.
Single nucleotide polymorphisms (SNPs) are the most frequent type among variations found in genomic regions and are valuable markers for genetic mapping, genetic diversity studies and association mapping in plants. There are three basic species known as Korean native which are Pyrus ussuriensis, P. pyrifolia, and P. fauriei. Genetic relationship among Korean pear cultivars compared with their parents was identified that they are closely related P. pyrifolia, P. ussuriensis and/or hybrids between two species. Lack of genetic resources, including molecular markers to study pears are very severe. Recently developed next generation sequencing (NGS) platforms offer opportunities for high-throughput and inexpensive genome sequencing and rapid marker development. The objective of this study was to develop polymorphic SNP markers in ‘Whangkeumbae’ and ‘Minibae’, which were chosen as the representative cultivars of P. pyrifolia and P. ussuriensis × pyrifolia in each among Korean pears, using genomic sequences generated by NGS technology. In this study, more than 18.6 Gbp and 15.8 Gbp sequences were obtained from NGS of ‘Whangkeumbae’ and ‘Minibae’, respectively. ‘Whangkeumbae’ and ‘Minibae’ contained 2,712,288 and 2,747,224 SNPs, respectively. In SNPs validations between ‘Whangkeumbae’ and ‘Minibae’, the number of polymorphic SNPs were 2,516,438 and non-polymorphic SNPs were 1,179,391. For HRM primer design, 2,125,479 HRM candidate primers were obtained from polymorphic SNPs and 343,731 SNP primers were developed. This study shows that the utility of NGS technology to discover efficiently a large number of SNPs and SNP primers can provide valuable information in the genome study of Pyrus spp.
We are currently developing a high-throughput single nucleotide polymorphism (SNP) genotyping service at IRRI to accelerate progress in rice breeding by providing rapid and cost-effective marker services. SNP marker development and validation is being performed based on cloned genes and QTLs, GWAS hits, and whole genome sequence data to identify predictive SNP markers at important genes for key traits for the breeding programs. Trait-based and targeted SNPs are being deployed in sets of 24 and 96 SNPs on a Fluidigm EP1 system. At the same time, 384 SNP sets and a 6K SNP chip developed by Susan McCouch at Cornell University are being used for higher density genome scans on an Illumina system. Genotyping by sequencing (GBS) approaches with 96 and 384 barcoded samples per sequence lane are also being evaluated in comparison to SNP array technology based on the number of loci, call rates, turnaround times, and cost per sample. An efficient sample processing workflow with an integrated LIMS is also being optimized to enable high throughput genotyping with sample tracking to minimize errors. Moreover, web-based SNP data analysis tools have been deployed through the IRRI Galaxy workbench to speed up SNP data analysis. Future efforts will focus on large-scale deployment of GBS across breeding materials to enable QC genotyping, tracking of donor introgressions, and integration of genome-wide prediction into the variety development pipelines. The large-scale application of high-density markers will help transform IRRI’s rice breeding programs and increase the rate of genetic gain towards developing high-yielding, stress-tolerant varieties for target environments and market segments