The purpose of this study is to provide basic data for setting environmental design standards for domestic greenhouses. We conducted experiments on thermal environment measurement at two commercial greenhouses where hot water heating system is adopted. We analyzed heat transfer characteristics of hot water heating pipes and heat emission per unit length of heating pipes was presented. The average air temperature in two greenhouses was controlled to 16.3oC and 14.6oC during the experiment, respectively. The average water temperature in heating pipes was 52.3oC and 45.0oC, respectively. Experimental results showed that natural convection heat transfer coefficient of heating pipe surface was in the range of 5.71~7.49W/m2 oC. When the flow rate in heating pipe was 0.5m/s or more, temperature difference between hot water and pipe surface was not large. Based on this, overall heat transfer coefficient of heating pipe was derived as form of laminar natural convection heat transfer coefficient in the horizontal cylinder. By modifying the equation of overall heat transfer coefficient, a formula for calculating the heat emission per unit length of hot water heating pipe was developed, which uses pipe size and temperature difference between hot water and indoor air as input variables. The results of this study were compared with domestic and foreign data, and it was found to be closest to JGHA data. The data of NAAS, BALLS and ASHRAE were judged to be too large. Therefore, in order to set up environmental design standards for domestic greenhouses, it is necessary to fully examine those data through further experiments.
In this study, a hot water pipe and a blowing fan were combined for developing zone heating technology for cherry tomato. The concept of this system was that hot air was firstly made by hot water pipe in one layer plastic duct and then a blowing fan made the hot air formed in a duct discharge through a duct hole to a shoot apex or a flower cluster which was temperature-sensitive part of cherry tomato. This system mainly consisted of hot water boiler, thermal tank, heat radiation plastic duct with the function of moving up and down electrically depending on the height of shoot apex. Developed system was applied to the cherry tomato greenhouse located in Jangam Chungcheongnamdo from Dec. 28, 2015 to Feb. 16, 2016 and compared with conventional entire space heating system of cherry tomato greenhouse and looked into cumulative yield for the estimate of growing state and energy saving rate from the conventional consumed energy. The result showed that cumulative yield was 3% higher and consumed energy was 32% lower than those of control greenhouse. The average temperature of shoot apex zone was 0.4~1.1℃ higher and the average relative humidity of shoot apex zone was 2,2~2.3% lower than those of entire space during night time in a shoot apex zone heating greenhouse and the average temperature of shoot apex zone was 0.7~1.4℃ lower and the relative humidity of shoot apex zone was 2.9~8.3% higher than those of entire space during night time in a entire space heating greenhouse.