검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2011.10 구독 인증기관·개인회원 무료
        The generation of patient-specific pluripotent stem cells has the potential to accelerate the implementation of stem cells for clinical treatment of degenerative diseases. This study was to examine the in vitro neuron cell differentiation characteristics of our established human (h) iPS cells (IMR90-iPS-1~2) derived from human somatic cells. For the neuron differentiation, well grown hiPS colonies were recovered by collagenase treatment and then suspended cultured in a non-adherent bacteriological culture dish using human embryonic stem (hES) cell culture medium for 4 days. Embryoid bodies were plated and cultured in serum-free ITSFN (insulin/transferrin/selenium/fibronectin) medium for 8 days to select neural precursor cells. Then selected neuronal cells were dissociated, plated onto poly-L-ornithin/laminin coated dish at a concentration of 2 x 105 cells/cm2 and expanded in N2 medium containing 20 ng/ml bFGF, 200 ng/ml SHH and 100 ng/ml FGF-8 for 7 days. For the final differentiation step involved removing agents and culturing for 14 days in 20 ng/ml BDNF added N2 medium. In the neural precursor stage, >90% of nestin positive cells and >50% NCAM positive cells were obtained. Also, in final differentiation step, we confirmed the high percent (>80%) of mature neuron tubulin-β positive cells and approximately >20% of tyrosine hydroxylase positive cells. Also, these results were confirmed by RT-PCR. These results indicated that hiPS cells have potential to generate specific neuron differentiation and especially TH+ neuron was also can be obtained, and thus hiPS-derived neural cells might be an usable source for the study of neuro-degenerative disease.
        2.
        2011.03 구독 인증기관 무료, 개인회원 유료
        Techniques to evaluate gene expression profiling, such as sufficiently sensitive cDNA microarrays or real-time quantitative PCR, are efficient methods for monitoring human pluripotent stem cell (hESC/iPSC) cultures. However, most of these high-throughput tests have a limited use due to high cost, extended turn-around time, and the involvement of highly specialized technical expertise. Hence, there is an urgency of rapid, cost-effective, robust, yet sensitive method development for routine screening of hESCs/hiPSCs. A critical requirement in hESC/hiPSC cultures is to maintain a uniform undifferentiated state and to determine their differentiation capacity by showing the expression of gene markers representing all three germ layers, including ectoderm, mesoderm, and endoderm. To quantify the modulation of gene expression in hESCs/hiPSC during their propagation, expansion, and differentiation via embryoid body (EB) formation, we developed a simple, rapid, inexpensive, and definitive multimarker, semiquantitative multiplex RT-PCR platform technology. Among the 9 gene primers tested, 5 were pluripotent markers comprising set 1, and 3 lineage-specific markers were combined as set 2, respectively. We found that these 2 sets were not only effective in determining the relative differentiation in hESCs/hiPSCs, but were easily reproducible. In this study, we used the hES/hiPS cell lines to standardize the technique. This multiplex RT-PCR assay is flexible and, by selecting appropriate reporter genes, can be designed for characterization of different hESC/hiPSC lines during routine maintenance and directed differentiation.
        4,000원
        6.
        2017.08 서비스 종료(열람 제한)
        The formation of definitive endoderm (DE) is a fundamental step for the development of the gastrointestinal tract, respiratory tract and endocrine organs. We present a CRISPR-based pooled screening approach to identify genes which contribute to DE induction from hiPSCs in vitro. CRISPR-based pooled genetic screens in mammalian cell culture enable researchers to identify genes required for a cellular phenotype of interest in an unbiased way. To enable a CRISPR-based forward genetic screen for identifying regulatory genes required for DE differentiation from hiPSCs, we performed pooled screens using a human genome-scale CRISPR knockout library. In addition, we performed a transcriptional activation screen using a lentiviral CRISPRa library to identify the downstream targets of the TGF/nodal/activin signaling pathway, which is a key signaling pathway for DE specification. We identified several signaling pathways including TGFβ, Erk, JNK, and CREB pathways are involved with DE differentiation. We suggest that CRISPR-based pooled genetic screens are a useful tool to identify key signaling pathways and genes required for in vitro differentiation processes and are served as a platform to improve differentiation protocols.
        7.
        2015.09 서비스 종료(열람 제한)
        Hepatocytes and hepatic progenitors derived from human ES cells may be a useful source for clinical application. Therefore, identification and purification of these cell types would be following important issues. There are very few candidate surface markers that can be used to identify and purify hepatic progenitor cells. In addition, indocyanine-green can be uptaken by mature hepatocytes, but cannot be applied for fluorescence activated cell sorting (FACS) due to its long emission wavelength. In the present study, we tested EpCAM as a potential marker for magnetic-activated cell sorting (MACS) of hepatic progenitors and also modified indocyanine-green into fluorescent indomonocarbocyanine for FACS-mediated sorting of mature hepatocytes after differentiation of human ES cells. Hepatic progenitor cells were sorted by MACS after incubation with anti-human EpCAM antibodies. After the final differentiation, the differentiated cells and mouse primary hepatocytes (control group) were incubated with indomonocarbocyanine and were sorted by FACS. MACS and immunocytochemistry data showed that approximately 45% of differentiated cells were EpCAM-positive cells. EpCAM-positive cells expressed α-fetoprotein, FOXa2, HnF4a, and CK18. Differentiation efficiency into albumin-positive cells was significantly higher in EpCAM-positive cells, compared to EpCAM-negative cells. Importantly, indomonocarbocyanine successfully stained cells that expressed ALB. Furthermore, FACS analysis data showed that the purity of hepatocytes that expressed albumin was significantly increased after purification of indomonocarbocyanine-positive cells. Our data demonstrated that human ES cell-derived hepatic progenitors can be efficiently isolated by MACS using EpCAM antibody. In addition, we also showed that indomonocarbocyanine can be successfully used to identify and purify mature hepatocytes using FACS.
        8.
        2015.09 서비스 종료(열람 제한)
        Hepatocyte-like cells (HLCs) derived from human pluripotent stem cells have received extensive attention in the development of drug screening and toxicity testing. However, it has been reported that stem cell-derived HLCs showed hepatic functions that were too limited to be of use in drug screening and toxicity testing, possibly due to the lack of sufficient intercellular communication under conventional two-dimensional (2D) culture conditions. Therefore, a 3D differentiation system may overcome the in vitro limitation of 2D culture to produce stem cell-derived hepatocytes with mature metabolic functions. In this study, the feasibility of using a silicone-based spherofilm, specifically designed to produce spherical cell clusters, to generate uniformly sized 3D hepatic spheroids from hESCs was investigated. Hepatic spheroids generated on the spherofilm showed more homogenous size and shape than those generated in conventional low-attachment suspension culture dishes. Results of immunohistochemical analysis showed that expression of the mature hepatic marker albumin (ALB) increased over time during the hepatic maturation process. Furthermore, the 3D culture system mimicked the in vivo 3D microenvironment. Laminin, which is an important component of hepatic ECM, was expressed in hepatic spheroids. The results of immunohistochemical analysis indicated that the 3D culture environment is capable of generating an in vivo-like microenvironment. In addition, quantitative PCR analysis showed that the mature hepatic marker ALB and cytochrome P450 (CYP) enzymes CYP3A4 and CYP3A7 were expressed at higher levels in 3D culture than in 2D culture. This indicates that the 3D culture system is suitable for hepatic maturation and that our size-controlled 3D culture conditions might accelerate hepatic function. These results suggest that 3D hepatic spheroids significantly enhance metabolic maturation of hepatocytes derived from hESCs
        9.
        2011.09 서비스 종료(열람 제한)
        Recent genomic evidences from unfractionated embryonic stem cell (ESC) cultures have demonstrated high levels of concomitant activating (H3K4me3) and repressive (H3K27me3) histone methylations, termed “bivalent marks”, at lineage specific gene loci, demonstrating that all cells residing within the cultures are developmentally equipotent. However, this dogma has been challenged, indicating that ESC cultures are heterogeneous, with individual cells displaying dynamic metastability and failed to make a connection with the variations between cell lines, a broad spectrum of differentiation, continuous phenotypic oscillation, and the expression of lineage specific genes in undifferentiated state. Recently, functional in vitro assays via fractionation of ESC cultures based on comparable expression of some phenotypes (c‐KIT, A2B5, SSEA3, Nanog, Rex‐1, IGFR1, and Stella) revealed a plastic gradient of clonogenicity and lineage specification within ESC cultures reflected by the presence of bivalent marks, which are resolved down to activating “monovalent marks”. More interestingly, dynamic heterogeneity represents a conserved feature on both mouse ESCs and human ESCs as being essentially required for self‐renewal and, more importantly, differentiation. However, it is the most substantive obstacle to control and specify ESCs into desirable cell types. Mostly, differentiation from ESCs has been evaluated by measuring the responses of whole EB populations under the specific inducible conditions, making it difficult to identify, which cell populations are dominantly contributing to differentiated progeny from ESCs. Therefore, further identification of novel transcriptional and phenotypic markers may allow for the isolation and enrichment of more promising target cells for stem cell‐based clinical therapy.