Alginate lyase from Streptomyces violaceoruber was purified by DEAE sephacel chromatography and SP sepharose chromatography. The specific activity of the purified enzyme was 14.6 units/mg protein, representing a 40.6-fold purification of the crude extract. The final preparation thus obtained showed a single band on Tricine-SDS polyacrylamide gel electrophoresis whose molecular weight was determined to be 23.3 kDa. The polyMG block of sodium alginate was hydrolyzed by the purified alginate lyase and then separated by activated carbon column chromatography and bio gel P-2 gel filtration. The main hydrolysates were composed of hetero type M/G-oligosaccharides with the degrees of polymerization (D.P.) being 6 and 8. To investigate the effects of hetero type M/Goligosaccharides from the sodium alginate on the growth of some intestinal bacteria, cells were cultivated individually on the modified-MRS medium containing D.P. 6 and 8 M/G-oligosaccharides. B. longumgrew 4.25-fold and 6.44-fold more effectively by the treatment of D.P. 6 and 8 M/G-oligosaccharides compared with those of standard MRS medium. In addition, B. bifidumgrew 3.3-fold and 5.4-fold more effectively by the treatment of D.P. 6 and 8 M/G-oligosaccharides. In conclusion, D.P. 8 was more effective than D.P. 6 hetero M/G-oligosaccharides as regards the growth of Bifidobacteriumspp. and Lactobacillus spp
Alginate lyase from Streptomyces violaceoruber was purified by DEAE sephacel chromatography and SP sepharose chromatography. The specific activity of the purified enzyme was 14.6 units/mg protein, representing a 40.6-fold purification of the crude extract. The final preparation thus obtained showed a single band on Tricine-SDS polyacrylamide gel electrophoresis whose molecular weight was determined to be 23.3 kDa. The polyMG block of sodium alginate was hydrolyzed by the purified alginate lyase and then separated by activated carbon column chromatography and bio gel P-2 gel filtration. The main hydrolysates were composed of hetero type M/G-oligosaccharides with the degrees of polymerization (D.P.) being 6 and 8. To investigate the effects of hetero type M/Goligosaccharides from the sodium alginate on the growth of some intestinal bacteria, cells were cultivated individually on the modified-MRS medium containing D.P. 6 and 8 M/G-oligosaccharides. B. longumgrew 4.25-fold and 6.44-fold more effectively by the treatment of D.P. 6 and 8 M/G-oligosaccharides compared with those of standard MRS medium. In addition, B. bifidumgrew 3.3-fold and 5.4-fold more effectively by the treatment of D.P. 6 and 8 M/G-oligosaccharides. In conclusion, D.P. 8 was more effective than D.P. 6 hetero M/G-oligosaccharides as regards the growth of Bifidobacteriumspp. and Lactobacillus spp. Key words: hetero M/G-oligosaccharides, Streptomyces violaceoruber
다양한 먹이 조건에서 생활하는 아메리카동애등에(Hermetia illucens)는 장내 세균의 의존성을 가질 수 있다. 이 가설을 증명하기 위해 본 연구는 종령 유충의 소화관에 존재하는 세균을 분리, 동정하고 효소활성 및 항균 능력을 분석하였다. 종령 유충의 소화관은 몸 체장에 약 7 배의 길이를 나타냈다. 한 개체의 소화관 내 존재하는 세균 수는 5.0 x 10⁶ cfu로 98% 이상이 후장에 존재했다. 소화관에는 3 종류의 상이한 세균이 존재했고, 미생물 동정 장치는 이들이 각각 Morganella morganii, Providencia rettgeri 및 Bacillus halodurans로 동정하였다. 이들 소화관 세균을 16S rDNA 서열을 분석한 결과 이 외에 Proteus mirabilis, Providencia alcalifaciens, Providencia sp.를 검출하였다. 이들 장내세균은 항생제 내성을 보였고, 타 미생물의 성장을 억제하였다. 또한 섬유소, 지질, 단백질 및 탄수화물의 분해 능력을 보유하였다. 본 연구 결과들은 아메리카동애등에 소화관에 유용성이 높은 세균을 보유하고 있다고 제시하였다.
This research was carried out to improve the utilization of agar by evaluating the effect of agarooligosaccharides on the intestinal microflora. Medium containing 0.2% agarooligosaccharides remarkably enhanced the growth of Bifidobacterium infantis; however, agarooligosaccharides did not influence the growth of Clostridium perJlingens. Agarooligosaccharides affected intestinal microflora to different extent by various pH and NaCl concentration. The growth of B. infantis enhancad over pH 4.5. Within 1 % NaCl concentration, addition of agarooligosaccharides enhanced the growth of B. infantis. In contract, NaCl did not affect the growth of Cl. perflingens at all concentrations tested. Therefore, agarooligosacchariedes improved the benevolent intestinal microflora and depressed to the level of bacteria causing putrefaction and food poisoning.