Korea Atomic Energy Research Institute (“KAERI”) has been developing various studies related to the nuclear fuel cycle. Among them, KAERI was focusing on the pyroprocess, which recycles some useful elements white reducing the volume and toxicity of spent nuclear fuel (SNF). Pyroprocess involves the handling of SNF, which cannot be handled directly by the facility worker. Therefore, SNF is handled and processed through remote handling device within a shielded facility such as a hot cell. Nuclear Facilities with such hot cells are called nuclear fuel cycle facilities, and unlike other facilities, heating, ventilating, and air conditioning (HVAC) system are particularly important in nuclear fuel cycle facilities to maintain the atmosphere in the hot cell and remove radioactive materials. In addition, due to the nature of the pyroprocess, which uses molten salt, corrosion is a problem in air atmosphere, so the process can only be carried out in an inert gas atmosphere. KAERI has a nuclear fuel cycle facility called the Irradiation Material Examination Facility (IMEF), and has built and operated the ACPF inside the IMEF, which operates an inert atmosphere hot cell for the demonstration of the pyroprocess. For efficient process development of the pyroprocess, it is necessary to put the developed equipment into the hot cell, which is a radiationcontrolled area, after sufficient verification in a mock-up facility. For this purpose, the ACPF mock-up facility, which simulates the system, space, and remote handling equipment of the ACPF, is operated separately in the general laboratory area. The inert gas conditioning system of the ACPF consists of very complex piping, blowers, and valves, requires special attention to maintenance. In addition, if there is a small leak in the piping within these valves or piping, radioactive materials can be directly exposed to facility workers, so continuous monitoring and maintenance are required to prevent accident. In this study, the applicability of acoustic emission technology and ultrasonic technology for leak detection in the inert gas conditioning system of ACPF mock-up facility was investigated. For this purpose, new bypass pipes and valves were installed in the existing system to simulate the leakage of pipes and valves. Acoustic emission sensors are attached directly to pipes or valves to detect signals, while ultrasonic sensors are installed at a distance to detect signals. The optimal parameters of each technology to effectively suppress background noise were derived and, and the feasibility of identifying normal and abnormal scenarios in the system was analyzed.
시간영역반사계(TDR)는 케이블의 물리적 결함을 검사하는 기법이며 누수 탐지 분야로의 응용영역을 확대하고 있다. 본 연구는 시간영역반사계 기법을 활용하여 선박 기관실 해수 배관의 누설 감지용 케이블형 센서를 개발하였다. 케이블 센서의 형상은 꼬임형상과 흡습부재를 이용하여 제작하였으며 개발된 센서의 누수 감지 여부와 위치 탐지 가능성을 확인하였다. 개발된 센서는 실제 배관 시험 장치 에 부착하여 평가하였으며 해수 누설에 따른 다양한 TDR 신호를 취득하였다. 센서는 꼬임횟수, 피복 두께를 변수로 하여 제작하였으며 TDR 신호에 미치는 효과를 분석하였다. 실험 결과, 꼬임형 센서는 평행한 띠 형상의 센서에 비해 평활한 신호 취득이 가능하였으며 최적 꼬임 횟수는 단위길이 당 10회 이상인 것으로 나타났다. 절연 피복두께의 경우 적정 민감도 확보가 가능한 절연 피복부재의 두께는 도선 직경의 80%~120%로 확인되었다. 누수 위치 추정을 위해 회귀분석 실시 결과, 결정계수는 0.9998로 실제 누설 위치와 높은 상관관계를 나타 내었다. 결과적으로 제안된 TDR 기반의 누수 감지용 꼬임형 센서는 해수 배관 시스템의 누수 감시 센서로의 충분한 적용성을 확인하였다.
In this study, a method of leakage detection was proposed to locate leak position for a reservoir pipeline valve system using wavelet coherence analysis for an injected pressure wave. An unsteady flow analyzer handled nonlinear valve maneuver and corresponding experimental result were compared. Time series of pressure head were analyzed through wavelet coherence analysis both for no leak and leak conditions. The leak information can be obtained through either time domain reflectometry or the difference in wavelet coherence level, which provide predictions in terms of leak location. The reconstructed pressure signal facilitates the identification of leak presence comparing with existing wavelet coherence analysis.
This paper suggests a nonlinear pressure consideration scheme through an unsteady pipe network analyzer for leakage detection with a portable pressure wave generator. In order to evaluate the performance of a proposal scheme, linear input pattern has been simulated and experiments had been carried out under both no leakage and one leakage conditions in a reservoir-pipeline-valve system. This method using portable pressure wave generator showed that a leakage can be detected from a reflection where a leakage is originated through time domain analysis. Meaningful similarity in pressure response between nonlinear input pattern and experimental results were found both no leakage and a leakage conditions.
Recently, Maintenance and inspection of plant are now being actively studied with the development of plant industry. In this paper, A leak detection in piping facilities using thermal imaging camera is proposed. This method was verified by laboratory experiment. In future, Appropriate algorithm will be applied to this method for real time detection and finally applied to the plant that is the ultimate goal of this study.