This study examines the correlation between livestock odor civil petitions and the establishment of malodor control areas in Jeju Special Self-Governing Province, focusing on swine farms where numerous civil petitions regarding malodors have been received. After the designation of the malodor control areas, high odor concentrations occurred in Aewoleup and Jocheon-eup, and the odor concentration decreased in other areas. The number of civil petitions shows a consistent annual trend, with increased petitions from March, peaking during summer (July and August), and decreasing from September into winter. In Jeju-si, there were many civil petitions in Hallim-eup and Aewol-eup where there were many malodor control areas. However, in Seogwipo-si, there were also many civil petitions in Pyoseonmyeon, where there is no malodor control area. Additionally, we compared the average multiple of compound malodors and the rate of exceeding the maximum allowable emission level for compound malodors with the number of livestock malodor civil petitions to assess the actual state of malodors. The results reveal a stronger correlation between the number of civil petitions and the rate of exceeding the compound malodors allowable emission level than the average multiple for compound malodors. These findings provide valuable insights into addressing livestock odor concerns and enhancing malodor control measures in Jeju Island.
As of 2014, 26.4% of the total regulated odor emission facilities are occupied by livestock facilities. The odor of pigs is 10.9 OU·m3 / min per pig, which generates 15-50 times higher odor than other livestock. It is also a major cause of livestock odor complaint. Livestock odor substance is mixed 169 kinds of ingredients, 30 of which can be detected as odor. It contains sulfur, volatile fatty acids, phenols and indoles, ammonia and volatile amines. In particular, odorous substances of phenols and indole derivatives not included in domestic designated odor substances have high odor contribution and are not well decomposed. Therefore, it is known that despite the use of the odor reducing agent having a high removal rate of ammonia and the like, the residue is long and causes continuous discomfort. The odor problem using physical and chemical methods can not be solved because it can not solve the fundamental problem if the animal odor is not decomposed or removed. In the anaerobic environment, the bacteria present in the manure may produce volatile organic compounds, which are the cause of the odor, and the odor may be generated, and some microorganisms decomposing the odor substances may reduce the odor. B. subtillis, Saccharomyces cerevisiae, L. acidophillus, Enterococcus faecium, L. plantarum, B.coagulans, B. fermentum, B. thuringiensis, B. licheniormis, B. subtillis, Enterococcus faecium, Lactobacillus acidophllus, L. fermentum, L. lactis, L. plantarum, L. casei, L. brevis, Streptococcus faecium, Clostridium butyricum, Saccharomyces cerevisiae, Aspergillus niger, A. oryzae, and photosynthetic bacteria are used as odor-reducing microorganisms.
Occurrence of livestock malodor cause to increase in health impact and thus to increase in public interest. Therefore scientific methods to decrease odor is required. Decrease of odor from cow and pig excreata, however, has not fully been successful. The purpose of this research was to select and assess the microorganism can reduce NH₃ produced from cow excreata. Microorganisms which having potential to decrease odor were isolated from cow excreata The strain NIAST-1 which can decrease odor material, was isolated from among the samples of livestock farm located in Yang-phyang. The isolated strain was identified as Pseudomonas stutzeri with respect to its physiological characteristics and 16s RNA sequencing method. Cell-free supernatant was found to have good and stable odor removing activity. Optimal condition and composition of culture medium were determined as follows: glucose (anhydride) 1.2% (w/v), yeast extract 0.6% (v/v), and temperature (28 ℃), agitaion rate (180 rpm) and aeration rate(0.1 L/min). In field test, microbial agents composed of ASA(Pseudomonas stutzerie) showed marked removal activity of ammonia gas (25%) and hydrogen sulfide (14.5%) gas produced from five ton scale pig storage container. Also this study focussed to assay the characteristics and utilization of environment friendly agricultural materials at laboratory and greenhouse.