검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 14

        1.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cars using diesel have always had problems with reducing exhaust fumes, and have been studied steadily in this regard. There were studies on the remanufacturing effect of DOC catalyst deactivated by diesel vehicle smoke reduction device, analysis of vehicle fire accident cases caused by damage to diesel vehicle smoke reduction device, and related studies on the remanufacturing effect of diesel vehicle smoke reduction device DPF. This study also developed a burner system in a smoke reduction device suitable for exhaust engines to completely burn smoke generated by institutions using diesel engines in low-temperature exhaust gases. Following the development of the existing high-performance heater, burner structure capable of maintaining ignition state in exhaust flow, pulsation generated by diesel engines, and exhaust flow control unit, the actual configuration, function and effect of the device, development contents, basic data and abnormalities of the vehicle, and comparison with other developed products.
        4,000원
        2.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cars using diesel have always had problems with reducing exhaust fumes, and have been studied steadily in this regard. There were studies on the remanufacturing effect of DOC catalyst deactivated by diesel vehicle smoke reduction device, analysis of vehicle fire accident cases caused by damage to diesel vehicle smoke reduction device, and related studies on the remanufacturing effect of diesel vehicle smoke reduction device DPF. This study is also to develop an exhaust flow control unit suitable for an exhaust engine to completely burn smoke generated by an engine using a diesel engine in a low temperature exhaust gas. The main systems to be developed are high-performance heaters, burner structures that can maintain ignition in exhaust flows, and exhaust flow control units that reduce exhaust gas backflow effects caused by diesel engines.
        4,000원
        3.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        ars using diesel have always had problems with reducing exhaust fumes, and have been studied steadily in this regard. There were studies on the remanufacturing effect of DOC catalyst deactivated by diesel vehicle smoke reduction device, analysis of vehicle fire accident cases caused by damage to diesel vehicle smoke reduction device, and related studies on the remanufacturing effect of diesel vehicle smoke reduction device DPF. This study also developed an optimized system for complete combustion of smoke generated by institutions using diesel engines in low-temperature exhaust gases. The main systems to be developed are high-performance heaters, burner structures that can maintain ignition in exhaust flows, and exhaust flow control units that reduce exhaust gas backflow effects caused by diesel engines.
        4,000원
        4.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cars using diesel have always had problems with reducing exhaust fumes, and have been studied steadily in this regard. There were studies on the remanufacturing effect of DOC catalyst deactivated by diesel vehicle smoke reduction device, analysis of vehicle fire accident cases caused by damage to diesel vehicle smoke reduction device, and related studies on the remanufacturing effect of diesel vehicle smoke reduction device DPF. This study also developed a burner system in a smoke reduction device suitable for exhaust engines to completely burn smoke generated by institutions using diesel engines in low-temperature exhaust gases. The main systems to be developed are high-performance heaters, burner structures that can maintain ignition in exhaust flows, and exhaust flow control units that reduce exhaust gas backflow effects caused by diesel engines.
        4,000원
        5.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cars using diesel have always had problems with reducing exhaust fumes, and have been studied steadily in this regard. There were studies on the remanufacturing effect of DOC catalyst deactivated by diesel vehicle smoke reduction device, analysis of vehicle fire accident cases caused by damage to diesel vehicle smoke reduction device, and related studies on the remanufacturing effect of diesel vehicle smoke reduction device DPF. This study is also to develop a burner structure in a smoke reduction device suitable for an exhaust engine to completely burn smoke generated by an engine using a diesel engine in a low-temperature exhaust gas. The main systems to be developed are high-performance heaters, burner structures that can maintain ignition in exhaust flows, and exhaust flow control units that reduce exhaust gas backflow effects caused by diesel engines.
        4,000원
        7.
        2014.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        바이오디젤의 저온유동성과 산화안정성은 주로 녹는점이 높은 포화 및 불포화 지방산 메틸에스테르의 함량에 의해 좌우된다. 본 연구는 동물성 유지인 우지 유래 바이오디젤에 요소를 첨가하여 포화지방산 메틸에스테르 함량을 저감시켜 동물성 바이오디젤의 저온유동성 개선과 포화지방산 메틸에스테르 함량이 저감된 동물성 바이오디젤을 식물성 바이오디젤에 혼합함으로써 식물성 바이오디젤(유채유, 폐식용유, 대두유 및 동백유)의 저온유동성을 개선하기 위해 수행 되었다. 연구결과, 동물성 바이오디젤의 포화도 저감을 통해 저온필터막힘점을 최대 –15℃까지 낮추었고, 포화도가 저감된 동물성 바이오디젤을 식물성 바이오디젤과 혼합함으로서 식물성 바이오디젤의 저온필터막힘점을 -10 ~ -18℃까지 낮출 수 있었다. 본 연구를 통해 동·식물성 유지 유래 바이오디젤의 저온특성을 개선함으로써 국내 겨울철 환경조건에서 연료유로 적용 가능성을 증대할 것으로 기대한다.
        4,000원
        9.
        1995.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The raw drinking water quality is getting worse because of the winter drought and the conventional treatment system is'nt suitable to obtain the satisfied quality of water. So, the advanced water system, BAC(Biological Activated Carbon) process is said to be effective to remove dissolved organics and ammonia nitrogen. In our study, the BAC pilot plant using Nak-dong river water is tested in low temperature. Following results are found from the study. The ammonia nitrogen removal rate of BAC system using wood-based carbon (PICABIOL) was 99% in $6^{\circ}C$ temperature. Chlorine dosage in wood-based BAC effluent was reduced to 67% of that in sand filtered wate. It resulted from the removal of ammonia nitrogen. Also, THM formed by chlorine addition in wood-based BAC effluent was decreased to 65% of that in sand filtered water. In the case of dual-filter, the removal efficiency of ammonia nitrogen was increased 30% more than in conventional sand filter. According to this result, the ammonia nitrogen load to BAC system could be lessened by the use of dual-filter.
        4,000원
        10.
        2018.05 서비스 종료(열람 제한)
        To achieve energy efficiency improvement is used to lower temperature for emission gas at catalyst inlet, or to reduce/stop using steam to reheat emission gas. Saved energy from this process can be used as power source in order to increase generation efficiency. Dry emission gas treatment, on the other hand, is the technology to increase generation efficiency by using highly efficient desalination materials including highly-responsive slaked lime and sodium type chemicals in order to comply with air pollution standards and reduce used steam volume for reheating emission gas. If dry emission gas is available, reheating is possible only with the temperature of 45℃ in order to expect generation efficiency by reducing steam volume for reheating. Retention energy of emission gas from combustion is calculated by emission gas multiplied by specific heat and temperature. In order to obtain more heat recovery from combustion emission gas, it is necessary to reduce not only exothermic loss from boiler facilities but emission calorie of emission gas coming out of boiler facilities. In order to reduce emission calorie of emission gas, it is efficient to realize temperature lowering for the emission gas temperature from the exit of heat recovery facility and reduce emission gas volume. When applying low temperature catalysts, the energy saving features from 0.03% to 2.52% (average 1.28%). When increasing the excess air ratio to 2.0, generation efficiency decreases by 0.41%. When the inlet temperature of the catalyst bed was changed from 210℃ to 180℃, greenhouse gas reduction results were 47.4, 94.8, 118.5, 142.2 thousand tons-CO2/y, CH4 was calculated to be 550.0, 1100.1, 1375.1, 1650.1 kg-CH4/y, and N2O was 275.0, 550.0, 687.6, 825.1 kg-N2O/y. In the case of high efficiency dry flue gas treatment, reduction of greenhouse gases by the change of temperature 120~160℃ and exhaust gas 5,000 ~ 6,500 ㎥/ton is possible with a minimum of 355,461 ton/y of CO2 and minimum 4,125 tons of CH4/y to a maximum of 6,325 ton/y and N2O to a minimum of 2,045 kg/y to a maximum of 3,135 kg/y.
        11.
        2013.01 KCI 등재 서비스 종료(열람 제한)
        The present work has been devoted to the catalytic reduction of N2O by H2 with Pt/SiO2 catalysts at very low temperatures, such as 110oC, and their nanoparticle sizes have been determined by using H2-N2O titration, X-ray diffraction(XRD) and high-resolution transmission electron microscopy(HRTEM) measurements. A sample of 1.72% Pt/SiO2, which had been prepared by an ion exchange method, consisted of almost atomic levels of Pt nanoparticles with 1.16 nm that are very consistent with the HRTEM measurements, while a Pt/SiO2 catalyst possessing the same Pt amount via an incipient wetness technique did 13.5 nm particles as determined by the XRD measurements. These two catalysts showed a noticeable difference in the on-stream deN2O activity maintenance profiles at 110℃. This discrepancy was associated with the nanoparticle sizes, i.e., the Pt/SiO2 catalyst with the smaller particle size was much more active for the N2O reduction. When repeated measurements of the N2O reduction with the 1.16 nm Pt catalyst at 110oC were allowed, the catalyst deactivation occurred, depending somewhat on regeneration excursions.
        12.
        2006.04 KCI 등재 서비스 종료(열람 제한)
        A (5 wt.%)Mn-(1 wt.%)V2O5/TiO2 catalyst were prepared by co-precipitation method and used for low-temperature selective catalytic reduction (SCR) of NOx with ammonia in the presence of oxygen. The properties of the catalysts were studied by X-ray diffraction (XRD), temperature programmed reduction (TPR) and scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS). The experimental results showed that (5 wt.%)Mn-(1 wt.%)V2O5/TiO2 catalyst yielded 81% NO conversion at temperature as low as 150℃ and a space velocity of 2,400 h-1. Crystalline phase of Mn2O3 was present at ≥15% Mn on V2O5/TiO2. XRD confirmed the presence of manganese oxide (Mn2O3) at 2θ=32.978°(222). The XRD patterns presented of (5 wt.%)Mn-(1 wt.%)V2O5/TiO2 did not show intense or sharp peaks for manganese oxides and vanadia oxides. The TPR profiles of (5 wt.%)Mn-(1 wt.%)V2O5/TiO2 catalyst showed main reduction peak of a maximum at 595℃.
        13.
        2004.06 KCI 등재 서비스 종료(열람 제한)
        V2O5/TiO2 catalysts promoted with Mn were prepared and tested for selective catalytic reduction of NOx in NH3. The effects of promoter content, degree of catalyst loading were investigated for NOx activity while changing temperatures, mole ratio, space velocity and O2 concentration. Among the various V2O5 catalysts having different metal loadings, V2O5(1 wt.%) catalyst showed the highest activity(98%) under wide temperature range of 200-250℃. When the V2O5 catalyst was further modified with 5 wt.% Mn as a promoter, the highest activity(90-47%) was obtained over the low temperature windows of 100-200℃. From Mn-V2O5/TiO2, it was found that by addition of 5 wt.% Mn on V2O5/TiO2 catalyst, reduction activity of catalyst was improved, which resulted in the increase of catalytic activity and NOx reduction. According to the results, NOx removal decreased for 10%, but the reaction temperature down to 100℃.