바이러스는 생물 의약 산업에서 다양한 응용 분야를 가지고 있다. 그들은 살충제 생산, 백신 생산, 유전자 전달, 암 치료제 등에 사용된다. 바이러스의 하류 처리는 그들의 생물학적 및 의약적 응용을 위한 필수 단계이다. 다양한 과정 중에 서 바이러스의 정제는 매우 중요하다. 막 크로마토그래피는 이 과정에서 중요한 역할을 한다. 이온 교환 막 크로마토그래피는 주로 사용되는 방법이지만 크기 배제 및 불충분한 정제에 관한 다양한 제한을 가지고 있다. 또한, 이는 인플루엔자와 같은 빠 르게 변화하는 바이러스의 균주에 적용될 수 없다. 이 검토는 막 크로마토그래피의 다양한 개선된 방법 또는 대안을 검토한 다. 이는 정제, 바이러스 회수율 및 방법의 확장성에 초점을 맞추고 있다.
바이오산업의 발전으로 의약품, 식품 등의 생산 과정의 분리/정제 공정에 사용되어 왔던 기존의 컬럼 크로마토그 래피를 대체하여 더 높은 처리효율을 갖는 막 크로마토그래피가 부상하고 있다. 본 연구에서는 서로 다른 기공 크기의 두 가 지 상용 셀룰로오스 아세테이트(Cellulose acetate, CA) 분리막을 탈아세틸화 과정을 통해, 리간드의 개질이 용이한 다공성 재 생 셀룰로오스 지지체를(Regenerated cellulose, RC) 제조하였다. 음이온 교환능을 부여하고자 grafting을 수행하였으며, 구체 적으로는 UV 중합법을 통해 4차 암모늄을 포함하는 음이온 교환 리간드(MAPTAC)를 부착하여 음이온 교환용 흡착막을 제 조하였다. 단백질 흡착 용량은 정적 흡착 용량(Static binding capacity, SBC)시험을 통해 총 단백질 흡착 용량을 측정했고, 동 적 흡착 용량(Dynamic binding capacity, DBC)을 측정하여 상용막과 비교 평가하였다. 성능 평가 결과 단백질 흡착량은 넓은 표면적에 의해 리간드 밀도가 높은, 기공 크기가 작은 순서로 높게 측정되었고, 상용 CA분리막을 탈아세틸화하고 리간드를 부착시킨 분리막(RC 0.8 + MAPTAC 43.69 mg/ml, RC 3.0 + MAPTAC 36.33 mg/ml)이 상용 막 크로마토그래피 제품(28.38 mg/ml) 대비 높은 흡착 용량을 보였다.
현재 바이오 분야에서 분리에 대한 수요가 급증함에 따라, 투과율 및 결합능 측면에서 높은 성능을 띠는 막크로 마토그래피가 수지 크로마토그래피의 대체 분리 공정으로 부상하고 있다. 실증을 기반으로 하여 막 소재가 결정되는 기존 분 리막 공정과 달리, 막크로마토그래피의 경우 분리하고자 하는 목표 물질에 적합한 분리 메커니즘 이해 그리고 이를 기반한 공정 설계가 필요하다. 본 논문에서는 생특이성을 활용하여 선택적으로 거대 분자를 포집하는 친화성 작용, 전하를 활용하여 생분자와 결합하는 이온 교환 작용 그리고 소수성을 활용하여 생분자와 결합하는 소수성 작용과 같은 막크로마토그래피 주요 분리 메커니즘들에 대해 다루고자 한다. 또한 본 논문에서는 단계적 측면에서 또는 소재 측면에 막크로마토그래피 기술 설계 시 고려해야할 변인들에 대해서 다루고자 한다.
한외여과막의 분획분자량을 결정하기 위하여 dead-end형 셀내에 평막을 설치하고 분자량 분포가 수천 내지 수백만의 혼합 dextran 수용액으로 투과 실험하였다. 원료 용액과 투과액을 GPC로 분석하여 각 분자량에 대한 배제율을 구하고 90% 배제율에 해당하는 dextran분자량을 분획분자량를 결정하였다. 투과압력을 0.5에서 2.0 bar까지 증가시킬 경우, Millipore사의 PBTK막은 63,000 내지 68,000 daltons로 10% 이내에서 변화하였지만 Millipore사의 PBQK 막 또는 (주)새한의 UE1812막의 분획분자량은 각각 3.5 및 4.3 배 증가하였다. 또한 투과액을 원료용액의 10내지 40%까지 분리막을 증가시키면서 배제율을 측정한 결과, PBTK의 분획분자량은 25% 증가하였다.
Polysulfone 재질의 다공성 평판막 및 실관막에 키토산 피막층을 형성시킨 후 반응성 염료인 Cibacron Blue 3GA를 고정화시켜 human serum albumin(HSA)의 결합용량이 최대 70 μg/cm2인 단백질 친화성 막을 제조하였다. 친화성 평판막 모듈을 대상으로 HSA에 대한 용출 크로마토그래피 실험을 수행하여 eluent 용액의 최적 환경조건을 결정하였는바, 1M KCl이 첨가된 농도 0.06 M, pH 10의 universal buffer를 eluent로 사용했을 때 리간드와 결합된 단백질의 용출이 가장 우수하였다. 친화성 평판막 및 실관막 모듈을 대상으로 HSA의 전열 크로마토그래피 실험을 수행하여 단백질에 대한 동적 결합용량을 측정하였다. 이 결과 동적 결합용량은 평판막 모듈의 경우에는 loading 용액의 유량과 HSA의 농도가 증가함에 따라 평형 결합용량 값으로부터 크게 감소하였으나, 실관막 모듈의 경우에는 loading 용액의 유량과 HSA의 농도에 관계없이 항상 평형 결합용량 수준을 유지하였는바, 따라서 실관막 모듈이 평판막 모듈보다 단백질 친화성 크로마토그래피 분리관으로서 더 효과적이었다