음이온 교환막(AEM) 수전해용 AEM 소재 개발은 재생 에너지를 활용한 수소 생산 기술을 개선하는 데 중요한 역할을 한다. 이러한 소재를 설계하고 최적화하는 데 분자동역학 전산모사가 유용하게 사용되지만, 전산모사 결과의 정확도 는 사용된 force-field에 크게 의존한다. 본 연구의 목적은 AEM 소재의 구조와 이온 전도 특성을 예측할 때 force-field 선택 이 미치는 영향을 체계적으로 조사하는 것이다. 이를 위해 poly(spirobisindane-co-aryl terphenyl piperidinium) (PSTP) 구조를 모델 시스템으로 선택하고 COMPASS III, pcff, Universal, Dreiding 등 네 가지 주요 force-field를 비교 분석하였다. 각 force-field의 특성과 한계를 평가하기 위해 298~353 K의 온도 범위에서 수화 채널 형태, 물 분자와 수산화 이온의 분포, 수산 화 이온 전도성을 계산하였다. 이를 통해 AEM 소재의 분자동역학 전산모사에 가장 적합한 force-field를 제시하고, 고성능 AEM 소재 개발을 위한 계산 지침을 제공하고자 한다.
Modification of the surface of raw activated carbon using chemical solvents can significantly improve the adsorption performance of activated carbon. Triethylenetetramine is one of the most important chemical solvents used to modify raw activated carbon for formaldehyde removal indoor. We conducted the liquid impregnation experiments at different initial concentrations, temperatures, adsorbent dosage and time ranges to fully investigate the adsorption of triethylenetetramine on the surface of raw activated carbon for modification. We found that the Langmuir isotherm model and pseudo-first-order kinetic model fit quite well with the experimental data and the R2 are 0.9883 and 0.9954, respectively. The theoretical maximum adsorption capacity is 166.67 mg/g. The change in Gibbs free energy (ΔG0), enthalpy change (ΔH0) and entropy change (ΔS0) were also calculated to study the direction and driving force of the liquid adsorption process. In order to understand the adsorption process at the molecular level, a new activated carbon model based on the actual physical and chemical properties of activated carbon was carefully established in the Materials Studio to simulate the liquid-phase adsorption. The pore structure, elemental composition, functional group content, density, pore volume, and porosity of the activated carbon model converge close to the actual activated carbon and the adsorption isotherms obtained from the simulation agree well with the experimental results. The results show that the adsorption of triethylenetetramine on activated carbon is a spontaneous, endothermic and monolayer physical adsorption process.
컴퓨터 시스템의 성능 및 다양한 전산모사 프로그램의 발전으로 더 복잡한 원소로 이루어진 화학시스템의 해석이 가능해지고, 그에 따라 분자동역학 전사모사를 활용한 연구가 활발히 이루어지고 있다. 특히, 기존에는 실험위주로 진행되던 고분자 막에 대한 기체 투과 특성을 계산하는 연구가 관심을 받고 있고, 식품포장, 의약품등에 사용되고 있는 기체차단성 막 에 대한 분자동역학 연구가 많이 이루어지고 있다. 최근 실크 피브로인을 이용해 코팅막을 만들었을 때 기체 차단 효과가 나 타난다는 보고가 있었고, 본 연구에서는 이러한 실크 피브로인을 활용해 복합막을 만들었을 때 산소 차단 효과가 나타나는지 확인하고자 분자동역학 전산모사를 이용해 연구를 진행하였다. 단일 모델을 제작하고 기체 투과 특성을 계산하고 실험값과 비교를 통해 모델이 실제 실험 결과를 반영하는 것을 확인하였고, 실제 복합막 모델을 만들어 고분자 내에서 기체 이동경로 분석을 진행한 결과 산소 분자가 피브로인 영역을 통과하지 못하고 막히는 것을 보여주었다. 따라서, 실크 피브로인이 도입된 복합막이 산소 차단 성능이 우수하여, 식품포장 등에 유용할 것으로 기대된다.
금속의 취성화는 수소와 접촉하는 구조물을 안정적으로 설계하는데 있어서 큰 문제가 되어왔다. 본 논문에서는 분자동역학 해석을 통해 균열선단 주변에 모인 수소원자들이 전위 이동 현상을 억제하고, 이로 인해 벽개 파괴 현상이 발생하는 것을 확인하였다. 다양한 수소 농도, 하중 속도, 수소 확산 속도 등을 바꾸어가며 분자동역학 해석을 수행하였고, 이에 따른 수소 취성화를 최소화시킬 수 있는 조건들을 조사하였다. 분자동역학 해석 결과는 기존의 실험결과와 잘 일치하였으며 이를 바탕으로 수소 취성화 현상을 정량화하여 평가하였다.
본 논문에서는 비평형 분자동역학 시뮬레이션 기법을 사용하여 알루미늄 박막과 실리콘 웨이퍼 간 열경계저항을 예측하였다. 실리콘의 끝 단 고온부에 열을 공급하고, 같은 양의 열을 알루미늄 끝 단 저온부에서 제거하여 경계면을 통한 열전달이 일어나도록 하였으며, 실리콘 내부와 알루미늄 내부의 선형 온도 변화를 계산함으로써 경계면에서의 온도 차이에 따른 열저항 값을 구하였다. 300K 온도에서 5.13±0.17m2·K/GW의 결과를 얻었으며, 이는 열유속 조건의 변화와 무관함을 확인하였다. 아울러, 펨토초 레이저 기반의 시간영역 열반사율 기법을 사용하여 열경계저항 값을 실험적으로 구하였으며, 시뮬레이션 결과와 비교·검증하였다. 전자빔 증착기를 사용하여 90nm 두께의 알루미늄 박막을 실리콘(100) 웨이퍼 표면에 증착하였으며, 유한차분법을 이용한 수치해석을 통해 열전도 방정식의 해를 구해 실험결과와 곡선맞춤 함으로써 열경계저항을 정량적으로 평가하고 나노스케일에서의 열전달 현상에 관한 특징을 살펴보았다.
수처리 분리막 분야에서 고분자는 세라믹과 함께 가장 중요한 소재로 이용되고 있다. 본 총설에서는 이러한 고분자 분리막 소재의 기술동향을 상용화 제품을 중심으로 분석하고자 하였으며, 이를 위하여 수처리 분리막의 종류에 따라 MF (Microfiltration), UF (Ultrafiltration), NF (Nanofiltration)/RO (Reverse Osmosis) 분리막으로 구분하여, 국가별, 소재별, 회사 별 고분자 분리막 제품 동향을 살펴보았다. 이를 통하여, 각 분리막 종류별로 주로 사용되고 있는 소재의 종류를 파악할 수 있었으며, 동시에 시장 지배적인 위치에 있는 업체들을 파악하고 이들 업체들이 어떤 소재들로 제품 포트폴리오를 구성하고 있는지 분석할 수 있었다. 이러한 결과들을 바탕으로 각각의 분리막 종류에 따른 소재 시장의 특징을 제시하였으며, 이런 특징을 바탕으로 각 시장에 신규로 진입하기 위한 기술 개발 전략을 제안하였다.
Imidazolium group을 도입한 Poly (ether ether ketone)(PEEK)를 합성하였다. 합성된 고분자를 필름으로 제조해 기체 특성평가를 진행하였다. 결과로 Diffusivity, Solubility, Permeability를 구하였다. 실험을 통해 얻은 결과 값들을 이론상의 결과와 비교하기 위하여 Molecular Dynamics simulation을 다루어 비교 분석을 하였다. 본 실험에서는 MD simulation을 이용해 이미다졸 그룹이 도 입된 3가지 다른 구조의 PEEK cell을 modeling하는 작업을 중심적으로 나타내었다.
연료전지용 전해질막의 성능에 있어서 가장 중요한 요소는 수소이온이 전해질막 내부에 형성된 수화채널을 따라 서 얼마나 빨리 전달될 수 있느냐이다. 여기에는 수화채널의 모폴로지 및 수소이온의 확산도 등이 매우 중요한 요소가 되는 데, 이를 규명하기 위하여 다양한 분자동역학 전산모사 연구가 진행되고 있다. 분자동역학 계산에 있어서 각 원자의 움직임 및 상호작용을 미리 변수화 시켜 놓은 force-field는 필수 요소 중 하나로서, 본 연구에서는 이러한 force-field의 종류가 전해 질막 전산모사에 미치는 영향을 분석하기 위하여, 다양한 force-field를 이용하여 연료전지용 전해질막의 수소이온 확산도를 계산하였다. 이 과정에서 non-bonding interaction을 결정하는 전하 값이 수화채널 모폴로지 형성에 매우 중요한 역할을 한다 는 것이 밝혀졌으며, COMPASS force-field가 가장 정확한 수소이온 확산도 값을 얻음으로써 연료전지용 전해질막의 전산모 사에 있어서 가장 적절한 force-field일 것으로 판단된다. 이러한 force-field의 적절한 선정은 최종 분자 구조 뿐만 아니라 수 소이온 확산도에도 큰 영향을 주는 것을 알 수 있었으며, 연료전지용 전해질막 전산모사 수행 시에는 이러한 부분을 충분히 감안하여 force-field를 선택하여야 할 것이다.
Imidazolium group을 도입한 Poly (ether ether ketone)(PEEK)를 합성하였다. 합성된 고분자를 필름으로 제조해 기체 특성평가를 진행하였다. 결과로 Diffusivity, Solubility, Permeability를 구하였다. 실험을 통해 얻은 결과 값들을 이론상의 결과와 비교하기 위하여 Molecular Dynamics simulation을 다루어 비교 분석을 하였다. 본 실험에서는 MD simulation을 이용해 cell을 modeling하는 작업을 중심적으로 나타내었다.
컴퓨터 시스템의 발전과 더불어 과학적 이론의 수식화와 체계화를 통해 고분자 소재의 물성을 예측할 수 있는 다양한 종류의 시스템이 개발되어 왔으며 실제 분자동력학 시뮬레이션을 이용한 고분자 소재의 물성예측은 다양한 분야에 적용되어 왔다. 본 연구에서는 탄화수소계 고분자인 술폰화폴리아릴렌이서술폰 계 고분자와 상용화된 폴리이서술폰, 폴리비닐리덴플로라이드 고분자 소재를 이용한 블렌드 막을 제조하였으며, 제조된 분리막의 함량변화에 따른 이온과 메 탄올 투과물성 변화 예측에 대한 연구를 진행하였으며, 실제 실험결과와 비교분 석을 진행하였다.