검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        새만금 내에서는 종종 식물플랑크톤이 증식하기에 알맞은 환경조건이 생성되며 일시에 식물플랑크톤 대증식이 발생하면서 조 류 관리기준을 초과하는 사례가 발생하고 있다. 이를 대비하기 위하여 과학적 예측기법을 토대로, 식물플랑크톤의 종별로 가장 효과적이 고 효율적인 녹조발생 억제 방안을 제안하기 위하여 식물플랑크톤 대증식 가능성을 예측하고, 제어할 수 있는 모델을 개발하였다. 즉, 하 천에서 유입하는 영양염(DIN, PO4-P)을 정책적으로 조절하고, 갑문운영을 통해 호 내 염분을 제어하는 것이다. 먼저 관측치로부터 인공신 경망 알고리즘을 이용해 식물플랑크톤 대증식 가능성을 예측 결과, 모델의 Kappa 수는 0.7889 ~ 1.0000의 범위로, good ~ excellent 수준이었 다. 다음으로 Garson 알고리즘을 이용하여 종별로 설명변수의 중요도를 평가하였고, 또한 DIN 및 염분 값의 변화에 따른 식물플랑크톤 대 량 증식 확률을 예측하였다. 그 결과, 각 종별로 식물플랑크톤의 대증식을 억제할 수 있는 DIN과 염분 농도를 정량적으로 예측할 수 있었 다. 따라서, 향후 새만금과 같은 거대한 인공 호수에서 식물플랑크톤의 대증식을 억제하기 위한 효율적이고 효과적인 대응방안을 마련할 수 있도록 녹조제어모델을 활용할 수 있을 것으로 판단된다.
        4,000원
        2.
        2021.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As a new entertainment and social way, online games now have a huge and increasing user group, so it is of great significance to identify the data stream of online games. Using the excellent nonlinear fitting ability of BP neural network and the advantages of global search of genetic algorithm, the initial weights and thresholds of BP neural network are optimized, and the BP neural network model optimized by genetic algorithm is established. The muti-dimensional input information is proposed to identify online game data streams. Through the experimental simulation, it shows that the selected muti-dimensional information and the established model can be well applied to online game stream recognition.
        4,000원
        4.
        2011.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 불특정 다수의 도로이용자들이 경로우회 시 갖는 의사결정과정속에 내포된 비선형성과 불확실성을 고려한 정도 있는 모형구축으로 주요 우회결정요인을 분석하는 것이 주요 목적이다. 이를 위하여 고속도로 및 국도를 이용하는 운전자를 대상으로 우회여부에 관련된 SP조사를 실시하였고, 조사결과에 대하여 의사결정나무와 신경망이론의 결합된 모형을 구축하여 운전자 우회결정요인을 분석하였다. 분석결과 운전자 우회여부결정에 영향을 미치는 요인은 우회도로 인지여부, 교통정보 신뢰도 및 이용빈도, 경로전환빈도, 나이순으로 나타났다. 또한 오분류표를 통한 기존 모형과의 예측력의 비교결과 결합된 모형의 오분류율이 8.7%로 기존 모형인 로짓모형 12.8%, 의사결정나무 단독 모형 13.8%와 비교했을 때 가장 예측력이 높은 것으로 나타나 운전자 우회결정요인 분석에 관한 모형의 적용 타당성을 확인할 수 있었다. 본 연구의 결과는 향후 교통량 분산효과와 도로망 효율 증대를 위한 효과적인 우회관리전략 수립 시 기초 자료로 활용가능하리라 사료된다.
        4,000원
        5.
        2010.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Real-time rainfall monitoring is of great practical importance over the highly populated Indochina area, which is prone to natural disasters, in particular in association with rainfall. With the goal of d etermining near real-time half-hourlyrain estimates from satellite, the three-layer, artificial neural networks (ANN) approach was used to train the brightness temperatures at 6.7, 11, and 12-μm channels of the Japanese geostationary satellite MTSAT against passive microwavebased rain rates from Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and TRMM Precipitation Radar (PR) data for the June-September 2005 period. The developed model was applied to the MTSAT data for the June-September 2006 period. The results demonstrate that the developed algorithm is comparable to the PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) results and can be used for flood monitoring across the Indochina area on a half-hourly time scale.
        4,000원
        6.
        2017.11 KCI 등재 서비스 종료(열람 제한)
        As drones gain more popularity these days, drone detection becomes more important part of the drone systems for safety, privacy, crime prevention and etc. However, existing drone detection systems are expensive and heavy so that they are only suitable for industrial or military purpose. This paper proposes a novel approach for training Convolutional Neural Networks to detect drones from images that can be used in embedded systems. Unlike previous works that consider the class probability of the image areas where the class object exists, the proposed approach takes account of all areas in the image for robust classification and object detection. Moreover, a novel loss function is proposed for the CNN to learn more effectively from limited amount of training data. The experimental results with various drone images show that the proposed approach performs efficiently in real drone detection scenarios.
        7.
        2010.08 KCI 등재 서비스 종료(열람 제한)
        강우-유출 관계는 유역의 수많은 시 공간적 변수들에 의해 영향을 받기 때문에 매우 복잡하여 예측하기 힘든 요소이다. 과거에는 추계학적 예측모형이나 확정론적 예측모형 혹은 경험적 모형 등을 사용하여 유출량을 예측하였으나 최근에는 인공신경망과 퍼지모형 그리고 유전자 알고리즘과 같은 인공지능기반의 모형들이 많이 사용되고 있다. 하지만 유출량을 예측하고자 할 때 학습자료 및 검정자료로써 사용되는 유출량은 수위-유량 관계곡선식으로부터 구하는 경우가 대부분으로 이
        8.
        2006.06 KCI 등재 서비스 종료(열람 제한)
        게임의 발전에 따라 게임에 등장하는 NPC(Non-Player Character)들의 지능 또한 중요성을 더해 가고 있다. 단순히 이동하고 플레이어를 공격하기만 하는 수준을 넘어서 WPC들 역시 다양한 기술과 전술을 사용하는 것이 최근의 MMORPG 게임의 추세이다. 본 논문에서는 신경망과 유전자 알고리즘을 이용하여 롤플레잉 게임에 사용되는 캐릭터에게 학습 및 적응 능력을 부여하는 방법을 제안한다. 제안된 지능 캐릭터가 얼마나 게임의 규칙과 전술을 잘 학습하고 적응하는지를 살펴보기 위하여 본 논문에서는 간단한 게임 모델을 제작하여 실험하였다. 캐릭터는 탱커(Tanker), 딜러(Dealer), 힐러(Healer)의 3가지 종류가 있으며, 지능 캐릭터 집단은 신경망과 유전 알고리즘으로 학습되고 FSM으로 움직이는 적 캐릭터 집단과의 전투를 통해 학습한다. 실험 결과 지능 캐릭터가 전투를 통해 자신과 적의 능력에 따른 적절한 전투 방식을 스스로 학습하고, 게임 규칙의 변화에 적응하는 것을 볼 수 있었다.
        9.
        2004.04 KCI 등재 서비스 종료(열람 제한)
        본 논문은 신경 회로망과 유전 알고리즘을 이용한 비선형 시스템 모델링을 다룬다. 비선형 함수의 근사성 때문에 시스템을 식별하고 제어하기 위해서 신경 회로망을 응용한 연구가 실제로 많이 이루어지고 있다. 빠른 응답시간과 최소의 오차를 위해서는 최적구조 신경 회로망을 설계하는 것이 중요하다. 유선 알고리즘은 최근에 단순성과 견고성 때문에 점점 많이 이용되는 추세이다. 따라서 본 논문에서는 유선알고리즘을 이용하여 신경회로망을 최적화한다. 오차와 응답시간을 최소화하는 신경 회로망 구조를 위해서 유전알고리즘의 유전자로 이진 코딩하여 최적 신경회로망을 탐색하고자 한다. 시뮬레이션을 통해서, 최적 신경회로망 구조가 비선형 시스템 식별에 효과적인 것을 입증하고자 한다.
        10.
        2002.03 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to evaluate the artificial neural network algorithm for water quality forecasting in Chungju lake, north Chungcheong province. Multi-layer perceptron(MLP) was used to train artificial neural networks. MLP was composed of one input layer, two hidden layers and one output layer. Transfer functions of the hidden layer were sigmoid and linear function. The number of node in the hidden layer was decided by trial and error method. It showed that appropriate node number in the hidden layer is 10 for pH training, 15 for DO and BOD, respectively. Reliability index was used to verify for the forecasting power. Considering some outlying data, artificial neural network fitted well between actual water quality data and computed data by artificial neural networks.