검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The oxygen and nitrogen enriched activated carbons were obtained from modification of commercial activated carbon by using nitric acid, sodium hydroxide and urea. Zeta-potentials of modified activated carbons were investigated in relation to copper ion adsorption. The structural properties of modified activated carbons were not so much changed, but the zeta-potentials and isoelectric points were considerably changed. The zeta-potential of nitric acid modified activated carbon was the most negative than other activated carbons in the entire pH region, and the pHIEP was shifted from pH 4.8 to 2.6, resulted in the largest copper ion adsorption capacities compare with other activated carbons in the range of pH 3~6.5. In case of urea modified activated carbon, copper ion adsorption was larger than that of the as-received activated carbon from pH 2 to pH 6.5 even though the pHIEP was shifted to pH 6.0, it was due to the coordination process operated between nitrogen functional groups and copper ion. The adsorption capacity of copper ion was much influenced by zeta-potential and pHIEP of carbon adsorbent.
        4,000원
        2.
        2006.09 구독 인증기관·개인회원 무료
        The removal of oxygen during sintering by carbothermic reduction was studied for steel compacts Fe-Cr-Mo-C and Fe-Mo-C prepared from prealloyed powders. The compacts were prepared by pressing at 600 and 1000 MPa and sintering at 1100 and 1300°C in vacuum. It showed that for the Cr-Mo steel, deoxidation strongly depends on the sintering temperature, in contrast to the plain Mo steel; at 1300°C very low oxygen levels were measured with the standard density compact while at high density still significant oxygen is contained. This indicates inhibition of final deoxidation by pore closure, but apparently without adverse effect on the mechanical properties.
        4.
        2013.07 KCI 등재 서비스 종료(열람 제한)
        Decomposition of non-biodegradable contaminants such as phenol contained in water was investigated using a dielectric barrier discharge (DBD) plasma reactor in the aqueous solutions with continuous oxygen bubbling. Effects of various parameters on the removal of phenol in aqueous solution with high-voltage streamer discharge plasma are studied. In order to choose plasma gas, gas of three types (argon, air, oxygen) were investigated. After the selection of gas, effects of 1st voltage (80 ~220 V), oxygen flow rate (2 ~7 L/min), pH (3 ~11), and initial phenol concentration (12.5 ~100.0 mg/L) on phenol degradation and change of UV254 absorbance were investigated. Absorbance of UV254 can be used as an indirect indicator of phenol degradation and the generation and disappearance of the non-biodegradable organic compounds. Removal of phenol and COD were found to follow pseudo first-order kinetics. The removal rate constants for phenol and COD of phenol were 5.204 × 10-1 min-1 and 3.26 × 10-2 min-1, respectively.