PURPOSES : A model for minimizing cutting loss and determining the optimum layout of blocks in pavements was developed in this study. METHODS : Based on literature review, a model which included constraints such as the amount, volume, overlap, and pattern, was developed to minimize the cutting loss in an irregular pavement shape. The Stach bond, stretcher bond, and herringbone patterns were used in this model. The harmony search and particle swarm algorithms were then used to solve this model. RESULTS : Based on the results of the model and algorithms, the harmony search algorithm yielded better results because of its fast computation time. Moreover, compared to the sample pavement area, it reduced the cutting loss by 20.91%. CONCLUSIONS : The model and algorithms successfully optimized the layout of the pavement and they have potential applications in industries, such as tiling, panels, and textiles.
Ship collision accidents not only endanger the safety of ships and personnel, but also may cause serious marine environmental pollution. To solve this problem, advanced technologies have been developed and applied in the field of intelligent ships in recent years. In this paper, a novel path planning algorithm is proposed based on particle swarm optimization (PSO) to construct a decision-making system for ship's autonomous collision avoidance using the process analysis which combines with the ship encounter situation and the decision-making method based on ship collision avoidance responsibility. This algorithm is designed to avoid both static and dynamic obstacles by judging the collision risk considering bad weather conditions by using BP neural network. When the two ships enter a certain distance, the optimal collision avoidance course and speed of the ship are obtained through the improved collision avoidance decision-making method. Finally, through MATLAB and Visual C++ platform simulations, the results show that the ship collision avoidance decision-making scheme can obtain reasonable optimal collision avoidance speed and course, which can ensure the safety of ship path planning and reduce energy consumption.
This paper deals with solution methods for discrete and multi-valued optimization problems. The objective function of the problem incorporates noise effects generated in case that fitness evaluation is accomplished by computer based experiments such as Monte Carlo simulation or discrete event simulation. Meta heuristics including Genetic Algorithm (GA) and Discrete Particle Swarm Optimization (DPSO) can be used to solve these simulation based multi-valued optimization problems. In applying these population based meta heuristics to simulation based optimization problem, samples size to estimate the expected fitness value of a solution and population (particle) size in a generation (step) should be carefully determined to obtain reliable solutions. Under realistic environment with restriction on available computation time, there exists trade-off between these values. In this paper, the effects of sample and population sizes are analyzed under well-known multi-modal and multi-dimensional test functions with randomly generated noise effects. From the experimental results, it is shown that the performance of DPSO is superior to that of GA. While appropriate determination of population sizes is more important than sample size in GA, appropriate determination of sample size is more important than particle size in DPSO. Especially in DPSO, the solution quality under increasing sample sizes with steps is inferior to constant or decreasing sample sizes with steps. Furthermore, the performance of DPSO is improved when OCBA (Optimal Computing Budget Allocation) is incorporated in selecting the best particle in each step. In applying OCBA in DPSO, smaller value of incremental sample size is preferred to obtain better solutions
We consider a satellite mission scheduling problem, which is a promising problem in recent satellite industry. This problem has various considerations such as customer importance, due date, limited capacity of energy and memory, distance of the location of each mission, etc. Also we consider the objective of each satellite such as general purpose satellite, strategic mission and commercial satellite. And this problem can be modelled as a general knapsack problem, which is famous NP-hard problem, if the objective is defined as to maximize the total mission score performed. To solve this kind of problem, heuristic algorithm such as taboo and genetic algorithm are applied and their performance are acceptable in some extent. To propose more efficient algorithm than previous research, we applied a particle swarm optimization algorithm, which is the most promising method in optimization problem recently in this research.
Owing to limitation of current study in obtaining real information and several assumptions, we generated 200 satellite missions with required information for each mission. Based on generated information, we compared the results by our approach algorithm with those of CPLEX. This comparison shows that our proposed approach give us almost accurate results as just less than 3% error rate, and computation time is just a little to be applied to real problem. Also this algorithm has enough scalability by innate characteristic of PSO. We also applied it to mission scheduling problem of various class of satellite. The results are quite reasonable enough to conclude that our proposed algorithm may work in satellite mission scheduling problem.
Many real world optimization problems are discrete and multi-valued. Meta heuristics including Genetic Algorithm and Particle Swarm Optimization have been effectively used to solve these multi-valued optimization problems. However, extensive comparative study on the performance of these algorithms is still required. In this study, performance of these algorithms is evaluated with multi-modal and multi-dimensional test functions. From the experimental results, it is shown that Discrete Particle Swarm Optimization (DPSO) provides better and more reliable solutions among the considered algorithms. Also, additional experiments shows that solution quality of DPSO is not lowered significantly when bit size representing a solution increases. It means that bit representation of multi-valued discrete numbers provides reliable solutions instead of becoming barrier to performance of DPSO.
Particle Swarm Optimization (PSO) which has been well known to solve continuous problems can be applied to discrete combinatorial problems. Several DPSO (Discrete Particle Swarm Optimization) algorithms have been proposed to solve discrete problems such a
멀티모달 최적화알고리듬의 일종인 ISPSO와 불확실도분석기법인 GLUE를 결합한 ISPSO-GLUE 기법을 TOPMODEL의 불확실도분석에 적용하였으며, 그 결과를 GLUE 기법과 비교하였다. 두 기법 모두 같은 횟수만큼 모형을 실행하였을 때 ISPSO-GLUE 기법의 누적성능이 더 좋아지는 시점을 발견할 수 있었으며, 그 이후로도 ISPSO-GLUE 기법은 GLUE 기법과는 달리 점진적인 성능의 향상을 보여 주었다. 두 기법이 비슷한 모양과 양상의 95% 불확실도구간을 생성하였다. 하지만 ISPSO-GLUE 기법이 약 5.4배 더 많은 관측치를 포함하는 것으로 나타났으며 GLUE 기법에 비해 훨씬 적은 횟수의 모형실행으로도 좋은 성능의 불확실도구간을 얻을 수 있는 것으로 나타났다. ISPSO-GLUE 기법과 비교했을 때 GLUE 기법이 최대 첨두유량의 감쇠곡선 부분에서 불확실도를 과대평가하였다. 이 시간대에 대해서는 GLUE의 경우 불확실도를 줄이기 위해 더 많은 행동모형들을 찾을 필요가 있다. ISPSO-GLUE 기법이 정량적인 성능평가에서 훨씬 많은 관측치를 포함할 수 있었다는 것은 이 기법의 가능성을 잘 보여 주었다고 할 수 있으며, 특히 계산적으로 값비싼 수문모형에서는 보다 큰 성능의 차이를 보일 것으로 기대된다.