검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 115

        7.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Laser-induced graphene (LIG) uses a CO2 infrared laser scriber for transforming specific polymer substrates into porous graphene. This technique is simple, scalable, low-cost, free of chemicals, and produces a 3D graphene for applications across many fields. However, the resulting 3D graphene is highly sensitive to the lasing parameters used in their production. Here, we report the effects of power, raster speed, number of lasing passes (with and without spot overlapping) on the resulting LIG structure, morphology, and sheet resistance, using a polyimide (PI) substrate. We find that the number of lasing passes, laser spot overlapping and brand of PI used had a strong influence on the quality of the LIG, measured in terms of the IG/ ID and I2D Raman bands and sheet resistance. Increasing number of passes and overlapping of laser spots led to increased LIG pore sizes, larger graphene scales, and reduced sheet resistance. Furthermore, the over-the-counter desktop CO2 laser engraving unit used introduced additional restrictions that limited the quality of the LIG produced, particularly due to inconsistent control of the laser scribing speed and a poor thermal management of the laser unit.
        4,000원
        19.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Herein, we report significantly enhanced mechanical properties and thermal conductivity of polyimide (PI) by incorporating a small amount (0.01 wt %) of individualized boron-doped high-quality graphene as a filler. The boron-doped expandable graphite (B-EG) was synthesized by mixing boric acid ( H3BO4) with expandable graphite (EG) and thermally treating the mixture at 2450 °C for 30 min using a graphite furnace in an argon atmosphere. The boron-doped graphene (B-g) was prepared by the solution-phase exfoliation of B-EG with an ultrasonication process, which is a method to obtain individualized graphene as well as few-layer graphene. The PI nanocomposites were prepared using the obtained graphene. The PI nanocomposites synthesized with high-quality B-graphene (B-g) showed enhanced mechanical properties and thermal conductivity compared to those of pure PI due to the doping effects and strong interfacial interactions between graphene and the PI matrix.
        4,000원
        1 2 3 4 5