Extreme temperatures and precipitations are expected to be more frequently occurring due to the ongoing global warming over the Korean Peninsula. However, few studies have analyzed the synoptic weather patterns associated with extreme events in a warming world. Here, the atmospheric patterns related to future extreme events are first analyzed using the HadGEM3-RA regional climate model. Simulations showed that the variability of temperature and precipitation will increase in the future (2051-2100) compared to the present (1981-2005), accompanying the more frequent occurrence of extreme events. Warm advection from East China and lower latitudes, a stagnant anticyclone, and local foehn wind are responsible for the extreme temperature (daily T>38 o C) episodes in Korea. The extreme precipitation cases (>500 mm day−1 ) were mainly caused by mid-latitude cyclones approaching the Korean Peninsula, along with the enhanced Changma front by supplying water vapor into the East China Sea. These future synoptic-scale features are similar to those of present extreme events. Therefore, our results suggest that, in order to accurately understand future extreme events, we should consider not only the effects of anthropogenic greenhouse gases or aerosol increases, but also small-scale topographic conditions and the internal variations of climate systems.
This study investigates the simulation skills of RegCM4 for Diurnal Variations (DV) of temperature and precipitation over South Korea according to the Lateral Boundary Conditions (LBCs) using two sets of 30-yr (1981-2010) integration with two LBCs (RG4_HG2: HadGEM2-AO and RG4_ EH6: EHCAM6). In general, RegCM4 successfully reproduces the DV of temperature irrespective of LBCs and seasons. The DV of temperature is well captured in the coastal region compared to that over inland area irrespective of LBCs and season although the magnitude of DV is underestimated. However, it fails to simulate the early morning peak of precipitation irrespective of LBCs, in particular, for summer and autumn although it captures the late afternoon peak over the inland region. And the impacts of LBCs on the simulation skills of RegCM4 for the DV of precipitation are more prominent during summer than other seasons. As a result, the simulation skill of RG4_HG2 for the DV of temperature is better than RG4_ EH6, but the simulation skill for the DV of precipitation is opposite. In general, the impacts of LBCs on the simulation skills for the DV of temperature and precipitation of RegCM4 are different according to the season, time and geographic location.
In this study, global climate change scenario by Hadley Centre Global Environmental Model version 2-Atmosphere and Ocean (HadGEM2-AO) is dynamically downscaled using four regional climate models (RCMs). All RCMs with 12.5-km and 50-km resolution are integrated for continuous 27 years (1979-2005). In general, RCMs with higher horizontal resolution more reasonably capture the spatial distribution of precipitation over South Korea compared to those with lower resolution. In particular, heavy precipitation regions related to complex mountain ranges are well simulated due to detailed topography in RCMs with higher resolution. Difference between RCMs with dissimilar resolutions is relatively robust in summer compared to other seasons. This could be associated with that higher resolution and detailed topography lead to more realistic simulation of heavy summer precipitation related to mesoscale phenomena.
Energy spectra of electron microbursts from 170 keV to 340 keV have been measured by the solid-state detectors aboard the low-altitude (680 km) polar-orbiting Korean STSAT-1 (Science and Technology SATellite). These measurements have revealed two important characteristics unique to the microbursts: (1) They are produced by a fast-loss cone-filling process in which the interaction time for pitch-angle scattering is less than 50 ms and (2) The e-folding energy of the perpendicular component is larger than that of the parallel component, and the loss cone is not completely filled by electrons. To understand how wave-particle interactions could generate microbursts, we performed a test particle simulation and investigated how the waves scattered electron pitch angles within the timescale required for microburst precipitation. The application of rising-frequency whistler-mode waves to electrons of different energies moving in a dipole magnetic field showed that chorus magnetic wave fields, rather than electric fields, were the main cause of microburst events, which implied that microbursts could be produced by a quasi-adiabatic process. In addition, the simulation results showed that high-energy electrons could resonate with chorus waves at high magnetic latitudes where the loss cone was larger, which might explain the decreased e-folding energy of precipitated microbursts compared to that of trapped electrons.
수공구조물의 설계를 위해서는 충분한 기간의 관측자료가 필요하지만, 우리나라의 수문자료는 대부분 충분한 수의 관측자료를 보유하고 있지 못하는 실정이다. 따라서 본 연구에서는 핵밀도함수를 이용한 비동질성 Markov 모형을 통해 시간강수량 자료를 모의하였다. 첫 번째로 시간강수량 자료에 변동핵밀도함수를 이용하여 천이확률을 산정하였으며, 두 번째로 난수와 천이확률을 통해 강수가 발생하는 시간을 결정하였다. 세 번째로 강수가 발생한 시간의 강수량의 크기를 핵밀
본 연구에서는 비동질성 Markov 모형을 이용한 시간강수량의 모의발생을 수행하였다. 즉, 대상유역을 선정하고 시간강수량을 모의하여, 모의된 시간강수량을 이용한 확률강수량 및 확률홍수량을 산정하여 관측자료와 비교함으로써 비동질성 Markov 모형의 적용성을 평가하였다. 모의발생된 강수자료와 관측강수자료의 통계적 특성은 매우 유사한 것으로 나타났으며, 특히 모의년수가 증가할수록 극치값이 증가하는 경향을 나타냈다. 또한, 모의자료를 이용해 산정한 확률홍수량
관측자료의 보완이나 확충을 위한 강수량 모의발생은 수문분석에 있어서 중요한 과제라고 할 수 있다. 강수량을 모의하는 방법은 크게 기존의 매개변수적 방법과 비매개변수적 방법 두 가지로 나눌 수 있고, 강수량 모의의 시간간격에 따라 일강수량 자료의 모의 또는 시간강수량 자료의 모의 등으로 구분할 수 있다. 지금까지, Markov모형은 일강수량 모의발생에 많이 이용되어왔다. 이러한 대부분 Markov모형들은 동질성모형으로 상태벡터를 구축하는데 있어서 자료의
본 연구의 목적은 간헐 수문사상인 시간강수계열의 구조적 특성을 고찰하여 강수량 모의발생을 위한 추계학적 모형을 개발하는 것이다. 이를 위하여 본 연구에서는 강수발생과정에 대한 추계학적 모형은 이재준과 이정식(2002)이 개발한 추계학적 모형을 이용하였으며, 강수량과정을 위하여 사상내의 시간강수량을 비정상 1차 자기회귀모형으로 기술하였다. 시간강수계열의 강수발생과정과 강수량과정을 조합하면 시간강수사상의 발생패턴과 사상기간내의 강수의 종속구조를 모의할 수