Silicon oxide (SiOx) has been considered one of the most promising anode materials for lithium-ion batteries due to having a higher capacity than the commercial graphite anodes. However, its practical application is hampered by very large volume variations. In this work, pyrolysis fuel oil is the carbon coating precursor, and physical vapor deposition (PVD) is performed on SiOx at 200 and 400 °C (SiOx@C 200 and SiOx@C 400), followed by carbonization at 950 °C. SiOx@C 200 has a carbon coating layer with a thickness of ~ 20 nm and an amorphous structure, while that of SiOx@C 400 is approximately 10 nm thick and has a more semigraphitic structure. The carbon-coated SiOx anodes display better charge–discharge performance than the pristine SiOx anode. In particular, SiOx@C 200 shows the highest reversible capacity compared with the other samples at high C-rates (2.0 and 5.0 C). Moreover, SiOx@C 200 exhibits excellent cycling stability with a capacity retention of 90.2% after 80 cycles at 1.0 C. This result is ascribed to the suppressed volume expansion by the PFO carbon coating on SiOx after PVD.
Pyrolyzed fuel oil (PFO) and coal tar was blended in the feedstock to produce pitch via thermal reaction. The blended feedstock and produced pitch were characterized to investigate the effect of the blending ratio. In the feedstock analysis, coal tar exhibited a distinct distribution in its boiling point related to the number of aromatic rings and showed higher Conradson carbon residue and aromaticity values of 26.6% and 0.67%, respectively, compared with PFO. The pitch yield changed with the blending ratio, while the softening point of the produced pitch was determined by the PFO ratio in the blends. On the other hand, the carbon yield increased with increasing coal tar ratio in the blends. This phenomenon indicated that the formation of aliphatic bridges in PFO may occur during the thermal reaction, resulting in an increased softening point. In addition, it was confirmed that the molecular weight distribution of the produced pitch was associated with the predominant feedstock in the blend.
This research considers the effect of added mesophase pitch (MP) as an additive during the pitch synthesis reaction of pyrolyzed fuel oil (PFO). Two effects are generated by adding MP. One is an enhancement of thermal stability due to the high thermal property of the additive; the other is that the volatile compounds that were removed by vaporization of PFO during the thermal reaction can participate in the pitch synthesis reaction (PFO→pitch) more efficiently. The effect differs according to the amount of the additive. When the amount of the additive is less than 7 wt%, the first effect is dominant, whereas the second effect is dominant when the additive amount exceeds 10 wt%.