After the Fukushima accident in 2011, a huge amount of radioactively contaminated water is being generated by cooling the melted fuel of units 1, 2 and 3. Most of contaminated water is seawater and underwater containing not only salt elements but also nuclear fission products with radioactivity. To treat the contaminated water, Cs/Sr removal facilities such as KURION and SARRY are being operated by TEPCO. Additionally, three ALPS facilities are on operation to meet the regularity standards for discharge to the sea. However, massive secondary wastes such as Zeolite, sludge and adsorbent is being generated by these facilities for liquid water treatment. The secondary wastes containing various radionuclide with Cs and Sr is difficult to store due to highly radioactive concentration and corrosive properties. In Japan, a variety of technologies such as GeoMelt vitrification, In-Can vitrification and CCIM vitrification is considered as a promising solution. In this study, they were reviewed, and the advantage and disadvantage of each technology were evaluated as the candidate technologies for thermal treatment of sludge radwaste.
During the operation or decommission of nuclear facilities, a large amount of dry active waste and cable waste with various shape and material is generated. Most of these wastes have almost no radioactive contamination and can be disposed of by incineration, landfill, recycling, etc. under clearance regulation. For clearance of radioactive waste, it is necessary to verify the characteristics of radiological contamination and prove that it meets the criteria for clearance regulation. According to the domestic clearance regulation, if it is difficult to measure radioactivity of wastes due to their surface condition using direct or indirect measurement methods, representative samples should be collected and analyzed for radioactivity. When sampling, it is desirable to collect samples of about 1 kg that can represent waste contamination per 200 kg or per 1 m2, and the homogeneity of the samples also should be demonstrated. However, in the case of dry active wastes, it is very difficult to prove the homogeneity of the samples because of surface shapes and conditions of the wastes. In particular, considering cable waste generated during the decommission, it is hardly capable to prove the representativeness of the sample, even though the inner shell of the covering material and the copper wire are almost uncontaminated. In this study, we show the development of a treatment system that makes it easy to prove the representativeness of samples when disposing of dry active waste or cable waste generated in nuclear facilities. The treatment device is designed in such a way that it has different storage unit and cutting unit suitable for the material characteristics of each waste type (soft, hard and cable), and therefore optimizes the efficiency of the shredding or cutting process. In addition, it is expected that the work efficiency in the radioactive treatment site with a narrow area can also be improved by providing a moving part on the device.