Virus-like particles (VLPs) are similar to pathogenic viruses, but because they have no nucleic acid, they have excellent safety and immunogenicity and are used as a good vaccine material. However, in the selection of various structural proteins of pathogenic viruses to form VLPs, all expression systems consume a lot of time in common. Among them, the baculovirus expression system causes additional time consumption to construct the recombinant baculovirus. Therefore, there is a need for a system that can rapidly determine the structural proteins required for effective VLP production. This study aims at solving this problem by constructing a BmNPV inducible expression platform through the construction of vectors induced by BmNPV. The platform was evaluated for overexpression using EGFP. We also confirmed the formation of virus-like particles through overexpression of canine parvovirus structural proteins.
Recently, the domestic air construction site is shortened rapidly, Ltd. is inevitable for reasons such as reduced air according to client's demands have been made. Accidents that occur during rapid construction is a situation that occurs accordingly indispensable. In the rapid construction and a study about the impact on safety and prevention measures and to contribute to accident prevention.
In this study we developed an integrated precast concrete decks for a rapid construction. The structural performance in the integrated precast bridge decks is evaluated by real-scale test bed and detailed finite element analyses. The numerical analysis results were compared with the experimental data from a real-scaled single-span precast/prestressed concrete bridge decks under truck loading. Parametric studies are focused on the various effects of external loads on the structural behavior for different locations and measuring points on the precast bridge decks. The assessment in this study indicates that the integrated precast bridge decks show an excellent structural performance as expected.
In the military and civil area a long-span temporary bridge for rapid construction is recently in demand. In this study the current state of technology and market is investigated as part of the planning research. The results show that the existing temporary bridges consist mainly of about 20m long span, and it takes 6 to 8 weeks to complete the construction. For an emergency restoration project in a short period a long-span temporary bridge for rapid construction requires the high-performance materials and the latest construction technology
As environmental concerns including climate change drive the strong regulations for car exhaust emissions, electric vehicles attract the public eye. The purpose of this study is to identify rural areas vulnerable for charging infrastructures based on the spatial distributions of the current gas stations and provide the target dissemination rates for promoting electric cars. In addition, we develop various scenarios for finding optimal way to expand the charging infrastructures through the administrative districts data including 11,677 gas stations, the number of whole national gas stations. Gas stations for charging infrastructures are randomly selected using the Monte Carlo Simulation (MCS) method. Evaluation criteria for vulnerability assessment include five considering the characteristic of rural areas. The optimal penetration rate is determined to 21% in rural areas considering dissemination efficiency. To reduce the vulnerability, the charging systems should be strategically installed in rural areas considering geographical characteristics and regional EV demands.
Because ordinary concrete cannot be hardened well under sub-zero temperatures, anti-freeze agents are typically added to prevent the frost damage and to ensure the proper hardening of concrete. With the advantage of a rapid exothermic reaction property, jet set concrete may be used as a cold weather concrete because it can reach the required strength before being damaged by cold weather. Recent studies are reported that magnesia-phosphate composites can be hardened very quickly and hydrated even in low temperature, which can be used as an alternative of severe cold weather concrete in arctic regions. This study developed the magnesia-phosphate composites that can be used in severe cold regions and suggested an appropriate mixture design from the experimental results.