검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2024.04 구독 인증기관·개인회원 무료
        탄소섬유 강화 플라스틱 (Carbon fiber reinforced plastics, CFRP)은 고함량의 탄소섬유 (Carbon fiber, CF)와 고분자로 이루어진 복합재료로서, 뛰어난 기계적 성능으로 항공우주, 자동차, 토목 등 다 양한 산업 분야에서 사용되고 있다. 하지만 사용량 증가에 따른 폐기물의 환경문제와 추출한 재활용 탄소섬유 (Recycled carbon fiber, rCF)의 적용 가능 분야의 한계로 인해 재활용이 제한적인 실정이 다. 본 연구에서는 rCF와 CF 혼입 시멘트계 전자파 복합재를 제작하여 그 성능을 비교 분석하기 위 한 실험을 수행하였다. 구성재료는 시멘트, 잔골재, 고성능 감수제를 사용하였으며, 비교 분석을 위해 CF와 rCF를 각각 6 mm, 12 mm 길이를 0.1, 0.3, 0.5, 1.0 wt.% 함량으로 사용하였다. 전자파 복합 재의 흡수 성능 향상을 위해 각각 다른 함량의 다층 구조를 형성하였으며, 전자파 투과를 낮은 함량에 서 높은 함량 방향이 되도록 측정을 진행하였다. 전자파 차폐성능은 재령 28일 이후 네트워크 분석기 를 사용하여 자유 공간에서 측정하였으며, C-band (4~8 GHz)와 X-band (8~12 GHz) 주파수 영역 에서의 반사율과 투과율을 각각 측정하였다.
        2.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the mechanical properties according to the rCF weight percent(10, 20, 30, 40, 50wt%) of the rCFRP specimen were evaluated and analyzed. First, to prepare rCFRP specimens, pellets were prepared according to the type of weight percent, and rCFRP tensile specimens according to ASTM D638 were prepared using an injection molding machine. Tensile tests were performed on each of 10 specimens according to weight percent conditions, and tensile strength and modulus of elasticity were calculated. For a detailed analysis of the correlation between the internal structure of the specimen and the mechanical properties, the weight percent to the constituent materials of the rCFRP specimen was calculated using mCT and used for the analysis of mechanical properties. For a more detailed analysis, a detailed analysis of the mechanical properties of rCFRP was performed through the fracture surface analysis of the specimen using FE-SEM.
        4,000원
        4.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The use of recycled materials, such as the fine recycled aggregate made from concrete waste and carbon fiber (CF) product of industrial waste, for the manufacture of conductive recycled mortars (CRM), transforms the mortar base cement normally made with cement:sand in a sustainable multifunctional material, conferring satisfactory mechanical and electrical properties for non-structural uses. This action provides ecological benefits, reducing the use of natural fine aggregates from rivers and the amount of concrete waste deposited in landfills resulting from construction waste. In this investigation the effect of the addition of CF on electrical properties in hardened, wet and dry state, electric percolation in dry state and fluidity of the wet mixture of a cement based CRM was evaluated: fine recycled aggregate: graphite powder, CRM specimens with dimensions of 4 × 4 × 16 cm. were manufactured for 3, 7 and 28 days of age and sand/cement ratios = 1.00, graphite/cement = 1.00, water/cement = 0.60 and CF = 0.1, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0% compared to the weight of cement. The results demonstrated the effect of the addition of CF in CRM, reducing fluidity of the mixtures due to the opposition generated by its physical interaction of CF with recycled sand or recycled fine aggregate and graphite powder (GP), in its case, placing the electric percolation percolation at 0.30% and 0.45% of CF for CRM with and without GP, respectively. Increases in electrical conductivity (EC) without the presence of GP are defined by the contact between the CF and the conductive paths formed. In contrast, with the presence of GP, the EC is defined by the contact between the CF and the GP simultaneously, forming conductive routes with greater performance in its EC.
        4,600원