The Cu2ZnSn(SxSe1-x)4 (CZTSSe) absorbers are promising thin film solar cells (TFSCs) materials, to replace existing Cu(In,Ga)Se2 (CIGS) and CdTe photovoltaic technology. However, the best reported efficiency for a CZTSSe device, of 13.6 %, is still too low for commercial use. Recently, partially replacing the Zn2+ element with a Cd2+element has attracting attention as one of the promising strategies for improving the photovoltaic characteristics of the CZTSSe TFSCs. Cd2+ elements are known to improve the grain size of the CZTSSe absorber thin films and improve optoelectronic properties by suppressing potential defects, causing short-circuit current (Jsc) loss. In this study, the structural, compositional, and morphological characteristics of CZTSSe and CZCTSSe thin films were investigated using X-ray diffraction (XRD), X-ray fluorescence spectrometer (XRF), and Field-emission scanning electron microscopy (FE-SEM), respectively. The FE-SEM images revealed that the grain size improved with increasing Cd2+ alloying in the CZTSSe thin films. Moreover, there was a slight decrease in small grain distribution as well as voids near the CZTSSe/Mo interface after Cd2+ alloying. The solar cells prepared using the most promising CZTSSe absorber thin films with Cd2+ alloying (8 min. 30 sec.) exhibited a power conversion efficiency (PCE) of 9.33 %, Jsc of 34.0 mA/cm2, and fill factor (FF) of 62.7 %, respectively.
펄라이트 재배시 타이머 및 적산일사량에 의한 관수가 멜론의 과실 품질 및 생육에 미치는 영향에 대하여 연구하였다 과육부분의 당도는 타이머의 경우 6:00부터 17:00까지 한시간마다 급액하고 12:00 이후에 3회(12:30, 13:30, 14:30) 급액해 준 처리구(T-2)에서 약간 놀았다. 적산 일사량 처리에서는 1회 적산값이 240Wh.m-2 이었을 때 15.7로 가장 높았다. 경도는 타이머 처리의 경우 T-2 처리구에서 낮게 나타났고, 적산일사량 처리에서는 적산값이 200Wh.m-2 일때 낮았다 과실의 크기는 타이머 처리 보다 적산일사량 처리에서 작았다. 과실의 무게는 처리간에 큰 차이를 보이지 않았다. 과실을 제외한 지상부중은 타이머 처리에서는 6:00부터 18:00 사이에 한시간 간격으로 급액한 처리구에서 높았고, 적산일사량 처리에서는 적산값이 200, 240Wh.m-2 때 약간 낮았다. 따라서, 생육초기에는 적산일사량을 180~200Wh.m-2 로 낮추어 주거나 1회 급액시간을 변경하고, 네트 발현이 완성되고 과폭 생장까지 마친 후(수확전 20일)부터 적산값을 240Wh.m-2 로 처리하고 1회 급액량을 초기보다 줄여나가는 방식이 바람직할 것으로 사료된다.
According to the star formation rate and metal enrichment rate given by the disk-halo model of Lee and Ann (1981), the two different forms of time-dependent initial mass function (IMF) and the present day mass function (PDMF) of nearby stars have been examined. It was shown that the constraint for the initial rapid metal enrichment requires the time-dependence of IMF at the very early phase ( t ≲ 5 × 10 8 yrs) of the solar neighborhood. The computed PDMF's show that the PDMF is nearly independent of any specific functional form of IMF as long as the latter includes a Gaussian distribution of log m. This result is due to the very small fractional mass ( × 5 of stars formed at the very early period during which the IMF is time-dependent. The computed PDMF suggests the presence of more numerous low mass stars than shown in Miller and Scalo's (1979) PDMF, supporting the possibility of the existence of low-velocity M dwarfs. According to the number distribution of stars with respect to [Fe/H], the mean age of these low mass star must be very old so as to yield the mean metal abundance ¯ [ F e / H ] ≈ − 0.15 for the stars in the solar neighborhood.
Solar radiation forecasts are important for predicting the amount of ice on road and the potential solar energy. In an attempt to improve solar radiation predictability in Jeju, we conducted machine learning with various data mining techniques such as tree models, conditional inference tree, random forest, support vector machines and logistic regression. To validate machine learning models, the results from the simulation was compared with the solar radiation data observed over Jeju observation site. According to the model assesment, it can be seen that the solar radiation prediction using random forest is the most effective method. The error rate proposed by random forest data mining is 17%.
The geomagnetic activity shows the semiannual variation stronger in vernal and autumnal equinoxes than in summer and winter solstices. The semiannual variation has been explained by three main hypotheses such as Axial hypothesis, Equinoctial hypothesis, and Russell-McPherron Effect. Many studies using the various geomagnetic indices have done to support three main hypotheses. In recent, Oh & Yi (2011) examined the solar magnetic polarity dependency of the geomagnetic storm occurrence defined by Dst index. They reported that there is no dependency of the semiannual variation on the sign of the solar polar fields. This study examines the solar magnetic polarity dependency of quiet time geomagnetic activity. Using Dxt index (Karinen & Mursula 2005) and Dcx index (Mursula & Karinen 2005) which are recently suggested, in addition to Dst index, we analyze the data of three-year at each solar minimum for eight solar cycles since 1932. As a result, the geomagnetic activity is stronger in the period that the solar magnetic polarity is anti-parallel with the Earth’s magnetic polarity. There exists the difference between vernal and autumnal equinoxes regarding the solar magnetic polarity dependency. However, the difference is not statistically significant. Thus, we conclude that there is no solar magnetic polarity dependency of the semiannual variation for quiet time geomagnetic activity.