검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 18

        1.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Somatic cell nuclear transfer (SCNT) in pigs has been used as a very important tool to produce transgenic for the pharmaceutical protein, xenotransplantation, and disease model and basic research of cloned animals. However, the production efficiency of SCNT embryos is very low in pigs and miniature pigs. The type of donor cell is an important factor influencing the production efficiency of these cloned pigs. Here, we investigated the developmental efficiency of SCNT embryos to blastocysts and full term development using fetal fibroblasts (FF) and mesenchymal stem cells (MSCs) to identify a suitable cell type as donor cell. We isolated each MSCs and FF from the femoral region and fetus. Cultured donor cell was injected into matured embryos for cloning. After that, we transferred cloned embryos into surrogate mothers. In term of in vitro development, the SCNT embryos that used MSCs had significantly higher in cleavage rates than those of FF (81.5% vs. 72%) (p<0.05), but the blastocyst formation rates and apoptotic cell ratio was similar (15.1%, 6.18% vs. 20.8%, 9.32%). After embryo transferred to surrogates, nine and nineteen clone piglets were obtained from the MSCs and FF group, respectively, without significant differences in pregnancy and birth rate (50%, 40% vs. 52.3%, 45.4%) (p>0.05). Moreover, there was no significant difference in the corpus hemorrhagicum numbers of ovary, according to pregnancy, abortion, and delivery of surrogate mothers between MSCs and FF groups. Therefore, the MSCs and FF are useful donor cells for production of clone piglets through SCNT, and can be used as important basic data for improving the efficiency of production of transgenic clone pigs in the future.
        4,000원
        2.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mesenchymal stem cells (MSCs) have been widely used as donor cells for somatic cell nuclear transfer (SCNT) to increase the efficiency of embryo cloning. Since replicative senescence reduces the efficiency of embryo cloning in MSCs during in vitro expansion, transfection of telomerase reverse transcriptase (TERT) into MSCs has been used to suppress the replicative senescence. Here, TERT-transfected MSCs in comparison with early passage MSCs (eMSCs) and sham-transfected MSCs (sMSCs) were used to evaluate the effects of embryo cloning with SCNT in a porcine model. Cloned embryos from tMSC, eMSC, and sMSC groups were indistinguishable in their fusion rate, cleavage rate, total cell number, and gene expression levels of OCT4, SOX2 and NANOG during the blastocyst stage. The blastocyst formation rates of tMSC and sMSC groups were comparable but significantly lower than that of the eMSC group (p < 0.05). In contrast, tMSC and eMSC groups demonstrated significantly reduced apoptotic incidence (p < 0.05), and decreased BAX but increased BCL2 expression in the blastocyst stage compared to the sMSC group (p < 0.05). Therefore, MSCs transfected with telomerase reverse transcriptase do not affect the overall development of the cloned embryos in porcine SCNT, but enables to maintain embryo quality, similar to apoptotic events in SCNT embryos typically achieved by an early passage MSC. This finding offers a bioengineering strategy in improving the porcine cloned embryo quality.
        4,000원
        3.
        2020.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The establishment of porcine embryonic stem cells (ESCs) from porcine somatic cell nuclear transfer (SCNT) blastocysts is influenced by in vitro culture day of porcine reconstructed embryo and feeder cell type. Therefore, the objective of the present study was to determine the optimal in vitro culture period for reconstructed porcine SCNT embryos and mouse embryonic fibroblast (MEF) feeder cell type for enhancing colony formation efficiency from the inner cell mass (ICM) of porcine SCNT blastocysts and their outgrowth. As the results, porcine SCNT blastocysts produced through in vitro culture of the reconstructed embryos for 8 days showed significantly increased efficiency in the formation of colonies, compared to those for 7 days. Moreover, MEF feeder cells derived from outbred ICR mice showed numerically the highest efficiency of colony formation in blastocysts produced through in vitro culture of porcine SCNT embryos for 8 days and porcine ESCs with typical ESC morphology were maintained more successfully over Passage 2 on outbred ICR mice-derived MEF feeder cells than on MEF feeder cells derived from inbred C57BL/6 and hybrid B6CBAF1 mice. Overall, the harmonization of porcine SCNT blastocysts produced through in vitro culture of the reconstructed embryos for 8 days and MEF feeder cells derived from outbred ICR mice will greatly contribute to the successful establishment of ESCs derived from porcine SCNT blastocysts.
        4,000원
        4.
        2020.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Somatic cell nuclear transfer derived embryonic stem cells (NT-ESCs) have significant advantages in various fields such as genetics, embryology, stem cell science, and regenerative medicine. However, the poor establishment of NT-ESCs hinders various research. Here, we applied fasudil, a Rho-associated kinase (ROCK) inhibitor, to develop somatic cell nuclear transfer (SCNT) embryos and establish NT-ESCs. In the study, MII oocytes were isolated from female B6D2F1 mice and performed SCNT with mouse embryonic fibroblasts (MEFs). The reconstructed NT-oocytes were activated artificially, and cultured to blastocysts in KSOM supplemented with 10 μM fasudil. Further, the blastocysts were seeded on inactivated MEFs in embryonic stem cell medium supplemented with 10 μM fasudil. A total of 26% of embryos formed into blastocysts in the fasudil treated group, while this ratio was 44% in the fasudil free control group. On the other hand, 30% of blastocysts were established NT-ESCs after exposure of fasudil, which was significantly higher than the control group (10%). The results suggest that fasudil reduced blastocyst development after SCNT due to inhibition of 2 cell cleavage while improved the establishment of NT-ESCs through the anti-apoptotic pathway.
        4,000원
        5.
        2017.05 구독 인증기관·개인회원 무료
        Introduction Porcine embryonic stem cells (pESCs) derived from cloned embryos might be a useful animal model in biomedical research, however, establishment of cloned pESCs is difficult by its incomplete nuclear reprogramming. Here, we report the improved development competence of porcine cloned embryos by vitamin C (VC) supplement to establish the pESCs. Materials and Methods Slaughterhouse-derived oocytes were in vitro matured for 44h and parthenogenetic and cloned embryos were produced using matured oocytes. Both of embryos were cultured for 6 days in PZM-5 media and development rates were examined. Four different concentration of VC (0, 25, 50, 100, and 200 μg/ml) was supplemented in IVM and IVC media and preimplantation developments in the 5 groups were compared in both of embryos Results and Discussion In the cleavage rates of IVM group, significantly higher rate was shown in 50 mg/ml group than other groups (84.5 ± 0.6% vs. 69.8 ± 5.5, 75.7 ± 1.8, 80.4 ± 0.2, 72.4 ± 0.1%; P<0.05), respectively. Significantly higher rates of blastocyst development also were shown in 50 mg/ml group than other groups (27.0 ± 2.0% vs. 20.4 ± 1.4, 22.1 ± 1.3, 23.7 ± 1.2, 19.6 ± 1.3%; P<0.05), respectively. In the cleavage rate of IVC group, non-significantly different with each group (84.0 ± 1.3, 86.7 ± 1.0, 88.4 ± 1.4, 76.7 ± 3.0, 64.6 ± 4.4; P<0.05). In the blastocyst rate of IVC group, significantly higher rate was shown in 25mg/ml and 50 mg/ml group than other groups (22.3 ± 1.7, 23.8 ± 1.7% vs. 19.1 ± 1.3, 15.9 ± 1.0, 5.8 ± 1.5%; P<0.05) In conclusion, supplement of 50μg/ml of VC in IVM and IVC media enhanced the development of porcine parthenogenetic embryos and these results will be a helpful information in the development of porcine cloned embryos and derivation of its embryonic stem cells.
        7.
        2012.06 구독 인증기관·개인회원 무료
        The aim of this study was to examine the effect of acteoside (the cyclin-dependent kinase inhibitor) on the SCNT efficiency with adult fibroblasts in dog. Canine adult fibroblasts were obtained from muscle and cell cycle of fibroblasts was synchronized by culturing to confluency, serum starvation and treating with 30 μM acteoside for 48 h. Cell cycle stages, cell cytotoxicity (apoptosis) and, prduction of reactive oxygen species (ROS) were analyzed using flow cytometry. The canine cells, prepared by confluent-cell culture or treating with 30 μM acteoside for 48 h, were injected into enucleated in vivo matured oocytes, the couplets were electrical fused and activated by calcium ionomycin. SCNT embryos using acteoside-treated fibroblasts were surgically transferred into oviducts of estrus cycle synchronized recipient dogs. In cell cycle synchronization (G0/G1), there was no significant difference between serum starvations (83.9%) and acteoside treated groups (81.3%) that were higher than confluent group (78.5%). In production of apoptosis, confluent and acteoside treated groups (4.3 and 4.5%, respectively) were generated less than serum starvation group (21.8%). In case of ROS, serum starvation group was induced a significantly higher than other groups. After synchronization of the donor cell cycle, either confluent or acteoside treated, cells were placed with enucleated in vivo-matured dog oocytes, fused by electric stimulation, activated, and transferred into naturally estrus-synchronized surrogates. Fusion and cleavage rate of acteoside treated group were 64.1 and 41.5%, which were higher than those of confluent group (53.9 and 20.6%, respectively). The reconstructed embryo development rates to 4-cell and 8-cell in acteoside treated group were 29.5 and 14.8%, respectively, while confluent group showed 11.1 and 3.2%, respectively. Total 54 SCNT embryos using acteoside-treated fibroblasts were transferred into oviducts of 2 recipient dogs and one recipient finally delivered one puppy, whereas din`t detected pregnancy on transfer of cloned embryos reconstructed with confluent cells in 6 surrogate dogs. In conclusion, the results of the current study demonstrated that canine fibroblasts could be successfully arrested at the G0/G1 stage with reduced the formation of ROS and apoptosis after acteoside treatment. This results may contribute to improve the effi-ciency of canine SCNT. * This research was supported by iPET (Grants 110056-3), Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea.
        8.
        2008.12 구독 인증기관 무료, 개인회원 유료
        Interspecies somatic cell nuclear transfer (iSCNT) is a valuable tool for studying the interactions between an oocyte and somatic nucleus. The object of this study was to investigate the developmental competence of in vitro‐matured porcine oocytes after transfer of the somatic cell nuclei of 2 different species (goat and rabbit). Porcine cumulus oocytes were obtained from the follicles of ovaries and matured in TCM‐199. The reconstructed embryos were electrically fused with 2 DC pulses of 1.1 kV/cm for 30 μs in 0.3 M mannitol medium. The activated cloned embryos were cultured in porcine zygote medium‐3 (PZM‐3), mSOF or RDH medium for 7 days. The blastocyst formation rate of the embryos reconstructed from goat or rabbit fetal fibroblasts was significantly lower than that of the embryos reconstructed from porcine fetal fibroblast cells. However, a significantly higher number of embryos reconstructed from goat or rabbit fetal fibroblasts cultured in mSOF or RDH, respectively, developed to the morular stage than those cultured in PZM‐3. These results suggest that goat and bovine fetal fibroblasts were less efficacious than porcine‐porcine cloned embryos and that culture condition could be an important factor in iSCNT. The lower developmental potential of goat‐porcine and porcine‐bovine cloned embryos may be due to incompatibility between the porcine oocyte cytoplasm and goat and bovine somatic nuclei.
        4,000원
        14.
        2004.03 구독 인증기관 무료, 개인회원 유료
        This study was conducted to investigate the developmental ability of caprine embryos after somatic cell interspecies nuclear transfer. Donor cells were obtained from an ear-skin biopsy of a caprine, digested with 0.25% trypsin-EDTA in PBS, and primary fibroblast cultures were established in TCM-199 with 10% FBS. After maturation, expanded cumulus cells were removed by vigorous pipetting in the presence of 0.3% hyaluronidase. The matured oocytes were dipped in D-PBS plus 10% FBS+7.5 ㎍/ml cytochalasin B and 0.05 M sucrose. The reconstructed oocytes were electrically fused with donor cells in 0.3 M mannitol fusion medium. After the electofusion, embryos were activated by electric stimulation. Interspecies nuclear transfer embryos with bovine cytoplasts were cultured in TCM-199 medium supplemented with 10% FBS including bovine oviduct epithelial cells for 7∼9 day. On the other hand, the NT embryos with porcine cytoplasts were cultured in NCSU-23 medium supplemented with 10% FBS for 6∼8 day at 39℃, 5% CO₂ in air. In caprine-bovine NT embryos, the cleavage(2-cell) rate was 36.8% in confluence and 43.8% in serum starvation. The developmental rate of morula- and blastocyst-stage embryos was 0.0% in confluence and 18.8% in serum starvation. In caprine-porcine NT embryos, the cleavage(2-cell) rate was 76.7% in confluence and 66.7% in serum starvation. The developmental rate of morula and blastocyst stage embryos was 3.3% in confluence and 3.0% in serum starvation, and no significant difference was observed in synchronization treatment between donor cells. In caprine-bovine NT embryos, the cleavage(2-cell) rate of cultured donor cells was 30.8% and 17.6% in 5∼9 and 10∼14 passage(P<0.05). The developmental rate of morula and blastocyst stage embryos were significantly higher(P<0.05) in 5∼9 passage(23.1%) than in 10∼14 passage(0.0%) of cultured donor cells. In caprine-porcine NT embryos, the cleavage rate was significantly higher(P<0.05) in 5∼9 passage(86.7%) than in 10∼14 passage(50.0%) of cultured donor cells. The developmental rate of morula and blastocyst stage embryos were 3.3 and 0.0% in 5∼9 and 10∼14와 passage of cultured donor cells. In caprine-bovine NT embryos, the developmental rate of morula and blastocyst stage embryos were 22.6% in interspecies nuclear transfer, 33.9% in in vitro fertilization and 28.1% in parthenotes, which was no significant differed. The developmental rate of morula and blastocyst stage embryos with caprine-porcine NT embryos were lower(P<0.05) in interspecies nuclear transfer(5.1%) than in vitro fertiltzation(26.9%) and parthenotes(37.4%).
        4,000원
        17.
        2017.12 KCI 등재 서비스 종료(열람 제한)
        Polyploidy is occurred by the process of endomitosis or cell fusion and usually represent terminally differentiated stage. Their effects on the developmental process were mainly investigated in the amphibian and fishes, and only observed in some rodents as mammalian model. Recently, we have established tetraploidy somatic cell nuclear transfer-derived human embryonic stem cells (SCNT-hESCs) and examined whether it could be available as a research model for the polyploidy cells existed in the human tissues. Two tetraploid hESC lines were artificially acquired by reintroduction of remained 1st polar body during the establishment of SCNT-hESC using MII oocytes obtained from female donors and dermal fibroblasts (DFB) from a 35-year-old adult male. These tetraploid SCNT-hESC lines (CHA-NT1 and CHA-NT3) were identified by the cytogenetic genotyping (91, XXXY,-6, t[2:6] / 92,XXXY,-12,+20) and have shown of indefinite proliferation, but slow speed when compared to euploid SCNT-hESCs. Using the eight Short Tendem Repeat (STR) markers, it was confirmed that both CHA-NT1 and CHA-NT3 lines contain both nuclear and oocyte donor genotypes. These hESCs expressed pluripotency markers and their embryoid bodies (EB) also expressed markers of the three embryonic germ layers and formed teratoma after transplantation into immune deficient mice. This study showed that tetraploidy does not affect the activities of proliferation and differentiation in SCNT-hESC. Therefore, tetraploid hESC lines established after SCNT procedure could be differentiated into various types of cells and could be an useful model for the study of the polyploidy cells in the tissues.