선박 및 해양구조물에서 사용하고 있는 고강도 알루미늄 합금들은 스틸과 비교해서 많은 이점을 가지고 있다. 최근 고강도 알루미늄 합금들은 육상 및 해양에 폭넓게 사용되고 있으며, 특히, 특수목적 선박의 선체 외판구조에 많이 이용되고 있고, 교량 구조물에 사용되는 상자 구조물, 그리고 고정식 해양플랫폼의 상부구조에서 소비율이 증가하고 있다. 알루미늄 재료는 스틸보다 1/3의 중량 구성비를 통하여, 구성 중량을 줄이게 하여 연비 절감을 가능하게 한다. 일반적인 강구조물의 응력-변형률 관계와 비교하면, 용접가공에 따라 발생하는 열영향부의 존재로 인하여 상당히 다르게 나타난다. 왜냐하면, 강구조물과 비교하면 열전도율이 높아서, 열영향부(heat affected zone, HAZ)가 남아 있어 구조 강도 저하를 가져온다. 본 논문에서는 MIG(Metal inert gas) 용접 때문에 발생하는 열영향부를 고려하고, 종방향 압축 하중에 대한 알루미늄 보강판의 좌굴 및 최종강도 특성을 분석하였다. MIG 용접에 따른 열영향부를 고려한 경우, 좌굴 및 최종강도 모두 감소하며, 열영향부의 범위가 15 mm부터 항복 이후 에너지 소실률이 크게 나타나며, 25 mm 이상부터는 그 차이가 크지 않다. 따라서, 알루미늄 합금재료를 적용한 보강판의 구조 거동을 파악하기 위해서는 열영향부 영향에 대한 검토 및 분석이 중요하다.
선박은 상자형태 구조로 구성되어 있으며 선박의 선 수미, 선저만곡부, 갑판 등에 주로 사용하고 있다. 이런 구조는 박판구조이며 1차 지지부재로 사용된다. 평판구조와 비교하였을 때 상이한 거동을 보이며 일반적으로 압축하중을 받을 경우 곡률변화에 따라 다른 좌굴 및 최종 강도 경향을 나타냈다. 따라서 본 논문에서는 압축하중을 받고 있는 보강곡판인 1/2+1+1/2 bay 모델에 대하여 비선형유한요소해석을 수행하였으며 매개변수 영향은 곡률변화뿐만 아니라 세장비, 웨브높이/두께 등을 고려하여 해석모델에 대한 붕괴모드에 대해 검토하였다.
선체구조는 기본적으로 판부재의 조합으로 이루어져 있으며, 이러한 판부재는 하중분담 능력에 따라서 전체적인 구조의 강도에 큰 영향을 미치게 된다. 또한 각 구조적인 판부재는 개별적으로 거동하는 것이 아니라 종합적인 구조로서 작용하게 된다. 선박구조물은 강구조물과 해양구조물에서와는 달리 고정도의 부정정 구조물로 구성되어 있으며, 이러한 구조물의 거동을 정확하게 규명하기 위해서는 복잡하게 구성되어 있는 선체판넬 구조를 단순화시켜서 해석에 적용하여야 한다. 본 연구에서는 선체판넬구조의 모델링영역에 따른 최종강도 거동의 차이를 분석하여, 합리적인 모델링영역을 규명하고자 한다. 사용된 해석모델은 실제 상선의 이중저구조에서 사용되는 판넬에서 채택하였으며, 유한요소해석 모델링 시 3가지 서로 다른 해석영역을 지정하여 적용하였다. 본 연구의 목적은 일축압축하중이 작용하는 보강판넬구조에서 서로 다른 모델링영역을 갖는 보강판에서의 최종강도 거동을 분석하여 최적의 해석모델링 영역을 찾는 것이다.
보강된 판 및 쉘구조의 안정성 및 후좌굴을 포함하는 기하학적 비선형 해석을 수행하기 위하여, total Lagrangian formulation에 근거한 연속체의 증분평형방정식으로부터 변형된 쉘요소인 유한요소이론을 제시하였다. 쉘구조의 곡률이 불연속적으로 변하거나 쉘부재들이 유한한 각도로 만나는 보강된 판 및 쉘구조의 비선형 해석이 가능하도록 주부재와 보강재 간의 연결점에 대한 일반적인 변환관계를 제시하였으며 좌굴해석 및 기하학적 비선형해석의 경우에 해의 정확성 및 수렴성을 개선시키기 위하여 접선강도행렬 산정시 회전각의 2차항을 포함시켰다. 또한, shear locking 현상을 극복하기 위하여 감차적분을 적용하였고 쉘구조의 좌굴해석에서는 power method를 적용하여 해석의 효율을 높였으며, 후좌굴해석에서는 변위 및 하중증분법을 적절히 결합시켜 보강된 쉘구조의 후좌굴 거동추적이 용이하였다. 또한, 입력자료를 손쉽게 준비하고 좌굴모드 및 후좌굴거동을 효율적으로 분석하기 위하여 전, 후 처리 프로그램을 개발하였고 다양한 해석예제를 통하여 다른 문헌의 해석결과를 비교함으로써 본 연구에서 개발된 유한요소 해석프로그램의 타당성 및 정확성을 입증하였다.
일반적으로 압축을 받는 판 구조는 국부 판좌굴 거동에 의해 압축강도가 현저히 저감하는 것을 방지하기 위해 종방향 보강재를 적용하여 세장비를 적절히 조정한다. 이 때 보강재로서 U형 단면 리브를 사용하는 것이 보다 효과적일 수 있으나, 정량적으로 평가할 만한 방법이 마땅치 않아 수치해석적으로 규명될 필요가 있다. 이에, 본 연구에서는 U리브의 단면 크기에 따라 실용적인 구현이 가능한 세 가지 U리브 형태를 상정하고 탄성좌굴강도에 대한 영향을 살펴보고자 한다. 범용 유한요소해석 프로그램인 ABAQUS를 이용하여 3차원 해석모델을 수립하여 고유치 해석을 실시하였다. 이를 통해, 국부좌굴강도를 수치적으로 평가하였으며 U형 단면 리브를 적용함에 의해 좌굴강도가 증진하는 효과를 확인하였다. 세 가지 U리브 형태 중에서 단면이 작은 경우에 좌굴강도가 최대로 증가되는 경향을 볼 수 있다.
압축하중 및 횡하중의 조합하중을 받는 연속 보강판넬의 좌굴강도 및 최종강도의 평가는 선체구조 안정성을 재고하는데 아주 중요한 요소이다. 예를들면, 선박의 공창 상태에서 선체외판은 수압하중에 의해서 파생되는 횡방향 면내 압축하중과 선체외판에 작용하는 횡하중은 대표적인 하중 성분이다. 지금까지의 대부분의 연구 결과들은 실험테스트 및 이론석인 접근 그리고 수치계산 방법에 의해서 수행되었으며, 단일 판 또는 보강판의 조합하중에 대한 많은 업적들이 있다. 그러나, 이들 중 대부분의 연구는 종방향 면내 압축하중과 횡하중에 의한 연구결과가 대부분이며, 횡방항 면내 압축하중과 횡하중에 대한 결과들은 상대적으로 많지가 않다. 게다가 이전의 연구들은 주고 네변 단순지지된 판부재를 고려하였으나, 실제의 구조를 고려해보면, 횡방향 프레임과 종방향 거더들이 교차되어 있는 보강 판넬 구조이다. 본 연구는, 3척의 실적선에서 얻은 이중저 판넬 모델을 적용하고, 횡하중의 크기를 변수로 한 탄소성대변형 유한요소해석을 수행하였다. 이러한 여러 가지 수치 해석을 통하여, 횡하중의 크기 변화에 대한 영향과 횡방향 압축하중이 작용하는 붕괴 매커니즘에 대해서 고찰하였다.
일반적으로 선박 및 해양구조물에서 사용하고 있는 고강도 알루미늄 재료들은 일반 강재에 비해서 많은 이점들을 가지고 있다. 이러한 알루미늄 재료들은 여러 분야에 걸쳐서 폭넓게 사용되고 있으며, 특히, 초고속 선박의 선체와 갑판부에 많이 이용되어지고 있고, 교량구조물에 사용되는 박스 거더, 그리고 해양구조물의 갑판부와 선측구조에도 널리 이용되고 있다. 이러한 알루미늄 구조는 전체적인 구조부재의 중량을 감소하게 하면서 선속의 증가를 가져온다. 일반적인 강구조물의 응력-변형률 관계와 비교하여 보면, 용접가공에 의하여 발생되는 열영향부의 존재로 인하여 상당히 다르게 나타난다. 왜냐하면, 강구조물에 비해 열전도율이 높아서, 열영향부(heat affected zone, HAZ)의 영향이 크게 작용하기 때문이다. 본 논문에서는 종방향 압축하중을 받는 알루미늄 보강 판넬의 최종강도 특성에 대하여, 열영향부의 범위를 변화한 유한요소해석을 통하여, 열영향부의 범위와 파굴 및 최종강도 거동의 관계에 대해서 고찰하였다.
선체는 기본적으로 얇은 판부재들의 조합으로 구성되어 있으며 이들 중 상당수는 유공을 가진 유공판(Perforated plate)으로 이루어져있다. 선체에 설치된 유공판으로서는 선체 상갑판 해치(하역시설로 사용), 선저부의 거더와 플로어(중량경감과 선박 건조 및 검사시 통로확보용), 다이어프램(중량경감 및 파이프 관통의 목적)등이 있다. 이들 유공판에 압축하중이 작용하면 좌굴과 최종강도 특성이 크게 변화할 뿐만 아니라 수반되는 면내응력도 재 분포하게 되어 심각한 문제를 발생한다. 본 연구에서는 실선에서 사용 중인 유공보강판의 모델을 조사하여 비선형 유한요소법(ANSYS)을 사용하여 종방향 압축하중이 작용하는 경우에 대해서 유공비, 웹 치수, 웹 두께 그리고 보강재 단면을 변화시켜가며, 최종강도 시리즈 해석을 수행하고, 최종강도 예측 설계식을 제안하였으며, 식의 정도성을 검증하기 위하여 유한요소해석 결과와 비교하여 정도를 확인하였다. 제안된 설계식은 초기구조설계 시 유공보강판의 최종강도 계산에 유용하게 사용되리라 판단된다.
선체구조는 기본적으로 판부재의 조합으로 이루어져 있으며, 이러한 판부재의 하중분담 능력 혹은 최종강도 평가는 선체구조의 합리적인 설계 및 구조의 안정성 평가에 있어서는 아주 중요하다. 또한, 선체구조를 구성하고 있는 구조요소들은 작용외력에 대하여 개별적으로 작용하지 않으며 전체적으로 연속거동을 하게 된다. 실제 선박에서의 붕괴형태 중 한가지는 종방향 굽휨에 의해서 갑판 혹은 선저부에 좌굴 및 소성붕괴이다. 그래서, 합리적인 설계에서는 이러한 급작스런 붕괴형태를 방지하기 위하여 좌굴 및 소성붕괴 거동을 파악하는 것이 아주 중요하며, 실제 선박에서는 갑판부와 선저부에서는 하중분담 능력을 증가시키기 위하여 여러개의 종보강재를 가진 보강판 구조의 설계를 하게 된다. 본 연구에서는 선체 판넬구조의 모델링 방법에 따른 최종강도 거동의 차이를 분석하여, 합리적인 모델링영역을 규명하고자 한다. 사용된 해석 모델은 실제 상선의 이중저구조에서 사용되는 판넬에서 채택하였으며 유한요소해석 모델링 시 3가지 단면형상에 대해 각각 6가지 서로 다른 해석모델을 적용하였으며, 이때 보강재의 단면형상을 변화하였다. 본 연구의 목적은 압축하중이 작용하는 선체 보강판구조에서 해석영역에 대한 좌굴 및 최종강도 거동의 특성을 분석하였다.
선체는 기본적으로 판부재들의 조합으로 구성되어 있으며 상당수는 유공판(Perforated plate)으로 이루어져있다. 선체에 설치된 유공판으로서는 선체 상갑판 해치(하역시설로 사용), 선저부의 거더와 플로어(중량경감과 선박 건조 및 검사시 통로확보용), 다이어프램(중량경감 및 파이프 관통의 목적)등이 있다. 이들 유공판에 압축하중이 작용하면 좌굴과 극한강도 특성이 크게 변화할 뿐만 아니라 수반되는 면내응력도재 분포하게 되어 심각한 문제를 발생한다. 실적선에서는 유공주위에 스티프너 보강을 통하여 취약한 좌굴강도 보완하고 있으며, 유공을 고려한 실선에서 사용 중인 유공보강판 모델을 적용하여 좌굴강도 및 극한강도를 파악할 필요성이 있다. 이와 같은 측면에서 각 조선소에서는 각국 선급들이 제시하는 유공판의 좌굴설계식을 사용하여 강도계산을 하고 있으나 임의의 유공크기에 대한 좌굴강도 및 극한강도 평가법을 찾기란 매우 어려운 일이다. 본 연구에서는 실선에서 사용 중인 유공보강판의 모델을 조사하여 비선형 유한요소법(ANSYS)을 사용하여 면내 압축하중이 작용하는 경우에 대해서 유공비, 웹 치수, 두께 그리고 보강재 단면을 변화시켜가며, 극한강도 시리즈 해석을 수행하고 압축극한강도에 미치는 영향을 검토하였다.
The purpose of this paper is the optimum modification of dynamic characteristics of stiffened plate structure including the number of stiffener. This paper shows the optimum structural modification method by dynamic sensitivity analysis and quasi-least squares method and considers it's validity. In the method of the optimization, finite element method, sensitivity analysis and optimum structural modification method are used. The change of natural frequency and total weight are made to be an objective function. Thickness of plate, the number of stiffener and cross section moment of stiffener become a design variable. The dynamic characteristics of stiffened plate structure is analyzed using finite element method. Next, rate of change of dynamic characteristics by the change of design variable is calculated using the sensitivity analysis. Then, amount of change of design variable is calculated using optimum structural modification method. It is shown that the results are effective in the optimum modification for dynamic characteristics of the stiffened plate structure including the number of stiffener.
본 논문은 선체구조에 많이 이용되고 있는 보강판 구조물의 동적 특성을 최적 변경하는데 그 목적이 있다. 유한요소법(FEM), 동적 감도해석법, 최적구조 변경법을 이용하여 보강판의 동적 특성을 최적화한다. 먼저, FEM을 이용하여 보강판 구조물의 동적 특성을 해석한다. 다음으로 설계변수의 변화에 따른 동적 특성의 변화율을 동적 감도해석법으로 해석한다. 감도해석법으로 구한 감도값과 최적구조 변경법을 이용하여 설계변수들의 변경 량을 계산한다. 보강판 구조물의 고유진동수의 변경을 목적함수로 하고, 보강판의 두께와 보강재의 단면2차 모우멘트를 설계 변수로 한다. 본 논문에서 이용한 최적구조 변경법이 보강판 구조물의 동특성을 최적화하는데 유용함을 보여준다.