Electrochemical water splitting presents an optimal approach for generating hydrogen ( H2), a highly promising alternative energy source. Nevertheless, the slow kinetics of the electrochemical oxygen evolution reaction (OER) and the exorbitant cost, limited availability, and susceptibility to oxidation of noble metal-based electrocatalysts have compelled scientists to investigate cost-effective and efficient electrocatalysts. Bimetallic nanostructured materials have been demonstrated to exhibit improved catalytic performances for the oxygen evolution reaction (OER). Herein, we report carbon aerogel (CA) decorated with different molar ratios of Fe and Ni with enhanced OER activity. Microwave irradiation was involved as a novel strategy during the synthesis process. Inductively coupled plasma mass spectrometry (ICP-MS), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscope (SEM), Energy dispersive X-ray spectroscopy (EDAX spectra and EDAX mapping), Transmission Electron Microscope (TEM), High-Resolution Transmission Electron Microscope (HR-TEM), and Selected Area Electron Diffraction (SAED) were used for physical characterizations of as-prepared material. Electrochemical potential towards OER was examined through cyclic voltammetry (CV), chronoamperometry, and electrochemical impedance spectroscopy (EIS). The FeNi/CA with optimized molar ratios exhibits low overpotential 377 mV at 10 mAcm− 2, smaller Tafel slope (94.5 mV dec− 1), and high turnover frequency (1.09 s− 1 at 300 mV). Other electrocatalytic parameters were also calculated and compared with previously reported OER catalysts. Additionally, chronoamperometric studies confirmed excellent electrochemical stability, as the OER activity shows minimal change even after a stability test lasting 3600 s. Moreover, the bimetallic (Fe and Ni) carbon aerogel exhibits faster catalytic kinetics and higher conductivity than the monometallic (Fe), which was observed through EIS investigation. This research opens up possibilities for utilizing bi- or multi-metallic anchored carbon aerogel with high conductivities and exceptional electrocatalytic performances in electrochemical energy conversion.
Ni–Cr–Al metal-foam-supported catalysts for steam methane reforming (SMR) are manufactured by applying a catalytic Ni/Al2O3 sol–gel coating to powder alloyed metallic foam. The structure, microstructure, mechanical stability, and hydrogen yield efficiency of the obtained catalysts are evaluated. The structural and microstructural characteristics show that the catalyst is well coated on the open-pore Ni–Cr–Al foam without cracks or spallation. The measured compressive yield strengths are 2–3 MPa at room temperature and 1.5–2.2 MPa at 750oC regardless of sample size. The specimens exhibit a weight loss of up to 9–10% at elevated temperature owing to the spallation of the Ni/Al2O3 catalyst. However, the metal-foam-supported catalyst appears to have higher mechanical stability than ceramic pellet catalysts. In SMR simulations tests, a methane conversion ratio of up to 96% is obtained with a high hydrogen yield efficiency of 82%.
The electrocatalytic characteristics of oxygen reduction reaction of the PtxM(1-x) (M = Co, Cu, Ni) supported on multi-walled carbon nanotubes (MWNTs) have been evaluated in a Polymer Electrolyte Membrane Fuel Cell (PEMFC). The PtxM(1-x)/MWNTs catalysts with a Pt : M atomic ratio of about 3 : 1 were synthesized and applied to the cathode of PEMFC. The crystalline structure and morphology images of the PtxM(1-x) particles were characterized by X-ray diffraction and transmission electron microscopy, respectively. The results showed that the crystalline structure of the Pt alloy particles in Pt/MWNTs and PtxM(1-x)/MWNTs catalysts are seen as FCC, and synthesized PtxM(1-x) crystals have lattice parameters smaller than the pure Pt crystal. According to the electrochemical surface area (ESA) calculated with cyclic voltammetry analysis, Pt0.77Co0.23/MWNTs catalyst has higher ESA than the other catalysts. The evaluation of a unit cell test using Pt/MWNTs or PtxM(1-x)/MWNTs as the cathode catalysts demonstrated higher cell performance than did a commercial Pt/C catalyst. Among the MWNTs-supported Pt and PtxM(1-x) (M = Co, Cu, Ni) catalysts, the Pt0.77Co0.23/MWNTs shows the highest performance with the cathode catalyst of PEMFC because they had the largest ESA.
The effect of La promoter on the carbon deposition and catalytic activity in the synthesis gas production with supported Ni catalysts was investigated. Active component was Ni and support was CeO2 and the promoter used was La. The reaction was carried out in a fixed bed reactor at 1 atm and 650~800℃. The catalysts were prepared by two methods, the impregnation method and urea method. The catalysts prepared by the urea method showed 10 times higher surface area than those of prepared by the impregnation method. By the introduction of La promoter in the catalyst system, carbon deposition was remarkably reduced from 16% to 2%. It appears that the promoter facilitates the formation of a stable fluoride-type phase, which reduces the carbon deposition. The best catalytic activity and CO and H2 selectivities were obtained with 2.5wt% Ni/Ce(La)Ox catalyst at 750℃, giving 90% methane conversion, 93 and.80% of CO and H2 selectivities, respectively.
Synthesis gas is produced commercially by a steam reforming process. However, the process is highly endothermic and energy intensive. Thus, this study was conducted to produce synthesis gas by the partial oxidation of methane to cut down the energy cost. Supported Ni catalysts were prepared by the impregnation method. To examine the activity of the catalysts, a differential fixed bed reactor was used, and the reaction was carried out at 750~850℃ and 1 atm. The fresh and used catalysts were characterized by XRD, XPS, TGA and AAS. The highest catalytic activity was obtained with the 13wt% Ni/MgO catalyst, with which methane conversion was 81%, and H2 and CO selectivities were 94% and 93%, respectively. 13wt% Ni/MgO catalyst showed the best MgNiO2 solid solution state, which can explain the highest catalytic activity of the 13wt% Ni/MgO catalyst.
Synthesis gas is commercially produced by a steam reforming process. However, the process is highly endothermic and energy-consuming. Thus, this study was conducted to produce synthesis gas by the partial oxidation of methane to decrease the energy cost. Supported Ni catalysts were prepared by the impregnation method. To examine the activity of the catalysts, a differential fixed bed reactor was used, and the reaction was carried out at 750~850℃ and 1 atm. The fresh and used catalysts were characterized by XRD, XPS, TGA and AAS. The highest catalytic activity was obtained with the 13wt% Ni/MgO catalyst, with which methane conversion was 81%, and H2 and CO selectivities were 94% and 93%, respectively. 13wt% Ni/MgO catalyst showed the best MgNiO2 solid solution state, which can explain the highest catalytic activity of the 13wt% Ni/MgO catalyst.