PURPOSES : This study aimed to perform real-time on-site construction volume management by using Internet of things (IoT) technology consisting of 3D scanning, image acquisition, wireless communication systems, and mobile apps for new and maintenance construction of concrete bridge deck overlays. METHODS : LiDAR was used to scan the overlay before and after construction to check the overlay volume. An enhanced inductively coupled plasma (ICP) method was applied to merge the LiDAR data scanned from multiple locations to reduce noise, and an anisotropic filter was applied for efficient three-dimensional shape modeling of the merged LiDAR data. The construction volume counter of the mobile mixer was directly photographed using an IP camera, and the data were transmitted to a central server via the LTE network. The video images were transmitted to the central server and optical character recognition (OCR) was used to recognize the counter number and store it. The system was built such that the stored information could be checked in real time in the field or at the office. RESULTS : As a result of using LiDAR to check the amount of overlay construction, the error from the planned amount was 0.6%. By photographing the counter of the mobile mixer using an IP camera and identifying the number on the counter using OCR to check the quantity, the results showed that there was a 2% difference from the planned quantity. CONCLUSIONS : Although the method for checking the amount of construction on site using LiDAR remains limited, it has the advantage of storing and managing the geometric information of the site more accurately. Through the IoT-based on-site production management system, we were able to identify the amount of concrete used in real time with relative accuracy.
수소는 다양한 신재생에너지 중 환경친화적인 에너지로 각광받고 있지만 농업에 적용된 사례는 드물다. 본 연구는 수소 연료전지 삼중 열병합 시스템을 온실에 적용하여 에너지를 절 약하고 온실가스를 줄이고자 한다. 이 시스템은 배출된 열을 회수하면서 수소로부터 난방, 냉각 및 전기를 생산할 수 있다. 수소 연료 전지 삼중 열 병합 시스템을 온실에 적용하기 위해 서는 온실의 냉난방 부하 분석이 필요하다. 이를 위해서는 온 실의 형태, 냉난방 시스템, 작물 등을 고려해야 한다. 따라서 본 연구에서는 건물 에너지 시뮬레이션(BES)을 활용하여 냉 난방 부하를 추정하고자 한다. 전주지역의 토마토를 재배하 는 반밀폐형 온실을 대상으로 2012년부터 2021년까지의 기 상데이터를 수집하여 분석했다. 온실 설계도를 참고하여 피 복재와 골조를 모델화하여 작물 에너지와 토양 에너지 교환을 실시했다. 건물 에너지 시뮬레이션의 유효성을 검증하기 위 해 작물의 유무에 의한 분석, 정적 에너지 및 동적 에너지 분석 을 실시했다. 또한 월별 최대 냉난방 부하 분석에 의해 평균 최 대 난방 용량 449,578kJ·h-1, 냉방 용량 431,187kJ·h-1이 산정 되었다.
The development of technology related to the Fourth Industrial Revolution and the growth of the online market due to pandemic are continuing the growth of the logistics market for product delivery. If it is difficult to deliver the product directly to the customer during delivery, storage and delivery using the unmanned courier box are being carried out. However, existing storage boxes are not actively used due to lack of usability even though they have the advantage of storing goods and delivering non-face-to-face. In addition, existing courier boxes are not prepared for cold chain transportation. The unmanned delivery storage device with ICT cold chain technology should be developed to prepare for the transition to non-face-to-face society, to improve logistics efficiency and meet user's requirements. Also, it is necessary to consider the measures to reduce the safety problems that may occur during the use and maintenance of the automatic system.This study conducted a model-based analysis for the development of unmanned delivery storage devices with ICT cold chain technology, and conducted a study to derive the system development specifications that meet the requirements and secure safety and apply them to the development process.
국제해사기구에서는 선박에서 배출되는 질소산화물 및 이산화탄소 등에 관한 환경규제를 꾸준하게 강화하고 있다. 이에 친환 경 요소를 바탕으로 하는 전기추진시스템의 수요가 증가하고 다양한 선박에 적용되며 연구개발이 꾸준하게 진행되고 있다. 전기추진시스 템은 신뢰성을 높이고 선내 배치를 용이하게 하기 위한 이중화 구성이 주로 채택되며 실제 장비나 공간을 가상 세계에 쌍둥이처럼 구현 하고 현실 세계의 정보와 데이터를 가상 세계와 통합하여 실제 환경에서 발생할 수 있는 상황을 컴퓨터로 시뮬레이션 함으로써 결과를 미리 예측할 수 있는 디지털트윈 기술의 접목을 통하여 전기추진시스템의 안전성 확보를 위한 연구 또한 매우 활발하게 진행되고 있다. 본 연구에서는 전기추진선박의 디지털트윈 기술개발을 위한 전력관리시스템 이중화에 대한 검증을 FMEA를 바탕으로 분석 후 선급에서 제시하는 이중화 FMEA 기준을 바탕으로 실제 선박 운항 조건에서 전력관리시스템의 단일 장비 고장의 일차 피해와 이차 피해 및 전체 시스템의 영향을 분석하여 추가 피해를 방지하기 위한 보상기능으로 전력관리시스템의 역할과 알고리즘을 제안하였으며 실제 테스트를 통해 추진력 보존이 개선되었음을 검증하였다.
PURPOSES : Over the years, the concentration of fine dust is gradually increasing, thereby aggravating the seriousness of the situation. Accordingly, this study intends to install a clean road system using low impact development (LID) techniques on the roadside in order to reduce the scattering of dust on roads effectively. This system stores rainwater collected through gutters in rainy weather and sprays water onto the pavement surface to reduce the scattering of road dust.
METHODS : The developed clean road system consists of a water tank, controller, rain detection sensor, and solar cell. Based on this, a test-bed construction was used to evaluate its applicability. By applying the developed system, actual applicability was evaluated through total suspended solid (TSS) test and fine dust measurement. TSS test was conducted to measure the reduction rate of scattering dust on the road owing to the water injected by the clean road system. A spray nozzle was used for the TSS test, and a nebulization nozzle was used for the measurement of fine dust. In order to increase the reliability of the test, three measurements were taken each, for normal road as well as unfavorable conditions road that reproduced the construction site.
RESULTS : In this study, fine dust concentration measurement and TSS test were conducted to evaluate the practical applicability of the developed clean road system. From the TSS test, it was found that for both general roads and roads depicting bad conditions, the TSS value after the first spray was the highest, and the value after the second spray was sharply reduced, such that most of the re-dispersed dust was washed out after the first spray, and similar TSS value results were obtained after the third spray. Based on this result, the result of fine dust measurement showed similar fine dust reduction effect of 9%-15.9% regardless of the concentration of fine dust in the atmosphere. These results indicate that the concentration of fine dust in the atmosphere does not significantly affect of the degree of reduction in fine dust.
CONCLUSIONS : In this study, a clean road system for reducing fine dust on the road was developed and its applicability was evaluated. In a future study, we intend to check the performance of the drainage pavement through performance evaluation of water permeability coefficient test and performance test in the form of drainage pavement. Through this, we intend to evaluate the applicability of the clean road system to which drainage pavement is applied. Moreover, we will develop a clean road system that applies drainage packaging, and analyzes the degree of fine dust reduction according to the spray angle, spray amount, and spray time of the clean road system in order to study the spray system with the optimum amount of fine dust reduction. In addition, in order to reduce fine dust in the winter, when fine dust is mainly generated, it is planned to install heating wires in spray pipes where freezing is expected. Lastly, the black ice prevention effect will be analyzed by mixing a certain amount of sodium chloride when spraying water.
In this study, based on the System Dynamics (SD) methodology, the interrelationship between the factors inherent in the operation of the New Technology Certification System (NTCS) in Korea was identified by a causal map containing a feedback loop mechanism in connection with ‘new technology development investment’, ‘commercialization of new technology’, and ‘sales by new technology’. This conceptualized causal map was applied to the simulation of the operations of the New Excellent Technology and Environmental Technology Verification System (NET&ETV) run by the Ministry of Environment among various NTCSs in Korea. A SD computer simulation model was developed to analyze and predict the operational performance of the NET&ETV in terms of key performance indices such as ‘sales by new technology’. Using this model, we predicted the future operational status the NET&ETV and found a policy leverage that greatly influences the operation of the NET&ETV. Also the sensitivity of the key indicators to changes in the external variables in the model was analyzed to find policy leverage.
최근 4년 간 발생한 해양사고 통계자료(중앙해양안전심판원, 2018)에 의하면 충돌사고의 대부분이 어선을 포함한 소형선에서 발생하고 있으며 경계소홀, 항행법규 미준수 등의 인적 요인이 충돌사고의 주요 원인이 되고 있다. 이에 따라 사고 예방을 위해 교육, 훈련을 확대 강화하고 있지만 소형선에 대한 사고는 여전히 일어나고 있는 실정이며 인적 요인으로 유발되는 사고를 줄이고자 기술적 방안 이 지속적으로 개발되고 있다. 본 연구에서도 상대적으로 고속인 소형선에 송·수신 주기가 빠른 WAVE 통신기술을 적용하여 충돌 회피시스템 구성하므로 인적 요인으로 인해 발생하는 사고를 감소시키고자 하였다. 그에 따라 통신 범위의 적정성 판단하고 회피동작 시간과 범위를 설정하였으며 그 것을 토대로 제어 알고리즘 고안 하였다. 그리고 통신단말기-제어기-조타장치를 구성하고 충돌회피 모의 시뮬레이션을 수행하므로 경보신호 발생 시 회피동작의 정상 구현을 확인하였다.