PURPOSES : The driver's ability to make a commitment has resulted in excessive force and a lack of commitment. To solve this problem, we are developing an algorithm that analyzes resolution in real-time by introducing IoT and informs drivers of the completion of compaction. METHODS : Real-time compaction was analyzed by installing accelerometers on the rollers. To evaluate the algorithms, we conducted an apparent density test.
RESULTS : The algorithm data and apparent density test data showed similar trends. This means that the proposed algorithms are sufficiently reliable. However, a lack of data samples and the fact that only data prior to completion of the commitment were analyzed may indicate a lack of reliability.
CONCLUSIONS : In subsequent studies, the number of samples will be increased and the data after completion of the commitment analyzed to increase reliability. Introducing a tachometer will prevent the TVL from falling sharply when the direction of the rollers' progress changes. In addition, it is also planned to upgrade the algorithms by researching cases in which the algorithms did not produce satisfactory results owing to problems such as temperature and speed.
There are many pollutants emitted into the air. Some of these pollutants have a malodor. Unlike other pollutants, people are able to detect and feel discomfort when this type of pollutant becomes high peak concentration instantaneously. In this sense, the peak concentration has an important meaning in the odor management and modeling. In previous odor modeling, the peak concentration was calculated by correcting the one-hour average concentration using the correlation equation. This study was carried out to find appropriate method to predict the peak concentration using meteorological input data of high time resolution in the odor modeling. It show that the peak concentration could be directly calculated from the dispersion modeling without using the correction equation when fine time scales such as 1 min or less time intervals are used as the meteorological input.
The results of the Crab pulsar observations with the photometrical MANIA (Multichannel Analysis of Nanosecond Intensity Alterations) complex at the 6-m telescope are presented. More than 12 millions photons in UBVR-bands simultaneously with time resolution of 10-7s were detected. Using the original software for search for optical pulsar period, we obtained the light curves of the object with time resolution of about 3.3 μs. Their detailed analysis gives the spectral change during pulse and subpulse, the shape of the pulse peaks, which are plateaus (with the duration of about 50 μs for the main pulse), limits for an amplitude of fine temporal (stochastic and regular) structure of pulse and sub pulse and the interpulse space intensity. The results of CCD-spectroscopy of the Crab pulsar show that its summarized spectrum is flat. There are no lines, neither emission nor absorbtion ones. Upper limit for line intensity or depth is 3.5% with the confidence probability of 95%.
The present study aimed at investigating the effects of collaborative work between Korean EFL university students and international foreign students on Intercultural Communicative Competence. Twenty four students (14 Korean students and 10 international students) participated in this research. Chen and Starosta’s (2000) intercultural sensitivity scale was implemented with Paradigm Software to measure the participants’ resolution latency time while they were responding to the survey. The results demonstrated that two groups showed significant differences in the areas of respect for cultural difference and interaction confidence. Also, apart from the response value, the analysis of resolution latency time showed other aspects of participants’ cognitive level of intercultural sensitivity. Thus, this study indicates that a multi-round analysis can give a more in-depth insight beyond the mean value of the survey’s response.
본 연구의 목적은 시간 분해능이 향상된 비지역적 평균 (fast non local means, FNLM) 노이즈 제거 알고리 즘을 모델링하여 광학 현미경 영상에서의 적용 가능성을 확인하는 것이다. 이를 위해 실제 흰쥐 (mouse)의 첫째어금니 치아를 사용하여 영상을 획득한 후 기존에 널리 사용되고 있는 노이즈 제거 알고리즘과 제안 하는 FNLM 알고리즘을 각각 적용하여 비교하였다. 정량적 평가는 대조도 대 잡음비 (contrast to noise ratio, CNR), 변동계수 (coefficient of variation, COV), 그리고 최근에 개발된 no reference 기반의 방법인 natural ima ge quality evaluator (NIQE)와 Blind/referenceless image spatial quality evaluator (BRISQUE)를 사용하였다. 결과적으로 모든 정량적 평가 인자에서 제안하는 FNLM 노이즈 제거 알고리즘이 가장 우수한 값을 나타내었다. 특히나 치아의 전체적인 형태학적 영상을 분석할 수 있는 NIQE와 BRISQUE 인자는 원본영상에 비하여 각각 1.14와 1.12배 향상됨을 확인할 수 있었다. 결론적으로 소동물 치아 광학 현미경 영상에서의 FNLM 노이즈 제거 알고리즘의 유용성 및 가능성을 증명하였다.
정상상태 가정을 완화시킨 습윤지수의 해상도 문제가 수치지형모형에서 다루어졌다. 반 동역학적 습은지수와 동력학적 습윤지수의 변화성을 수치고도모형의 격자 크기와 배수시간을 변화시키면서, 공간적 통계적으로 고찰하였다. 변화하는 배수시간과 격자크기에 따라 습윤지수의 구조화 양상이 관찰 되었다. 설마천 유역의 적용결과 비교적 짧은 배수시간에서는 습윤도의 천이성이 관찰되었고, 10,000 시간 이상의 배수 시간에서는 통계적 분석 결과가 정상상태의 특성으로 수렴함을