Nowadays, consumption of fisheries products is increasing. There are several factors, one of which is a quantitative development through aquaculture. Another factor is an increase qualitative consumption of fish which require that fish be supplied alive. This requires a lot of technical effort to transport the live fish that have low survival rate (c.f. tuna and mackerel) in coastal waters and in the open sea. To develop a towing cage for transporting the live fish, model test in a circulate water channel and simulation by computer tool were carried out. In order to spread vertically, floats were attached at the upper part of the cage, and iron chains attached at the lower part of the cage. For horizontal spreading, kites were attached on the cage. The tension and spreading performance of the cage were measured. The result shows that the tension and reduction ratio of inside volume of the cage were tended to increase with increased towing speeds. The suitable operation condition in towing cage was 1.0 m/s towing speeds with vertical spreading force 8.7 kN, horizontal spreading force 5.6 kN; in this case the reduction ratio of inside volume of the cage was estimated as 25%.
With comparison of maximum vertical reaction force and lower limb on drop landing between normal and flat foot group, this study is to provide fundamental data of the prevention of injury and the treatment of exercise which are frequently occurred on flat foot group's drop landing. The surface electrodes were sticked on lateral gastrocnemius muscle, medial gastrocnemius muscle, tibialis anterior and the drop landing on a force plate of 40cm was performed with a normal group who had no musculoskeletal disease and a flat foot group of 9 people who had feet examinations. Vertical reaction force were significantly statistically different between two groups(p<.001). Muscle activity of lower limbs in all three parts were not statistically different but showed high tendency on average in the flat foot group. The flat foot group had difficulties in diversification of impact burden and high muscle activity. Therefore, it was suggested that muscular strengthening of knee joints and plantar flexions of foot joints which were highly affected in impact absorption will be required.
일반적인 각형 라멘 구조물에 있어서, 상하지진동은 수평지진동에 비하여 구조물에 미치는 영향이 작다고 간주되어, 내진설계에 있어서는 수평지진동만을 고려하는 것이 일반적이다. 그러나, 공간구조물에서는 수평지진동에 의해 수평방향뿐만 아니라 연직방향으로도 구조물의 동적응답이 크게 증폭되며, 또한 상하지진동에 의해서도 연직방향뿐만 아니라 수평방향으로도 구조물의 동적응답이 크게 증폭되는 특성을 가지고 있으므로, 수평 상하 양방향의 지진동을 모두 고려할 필요가 있다. 본 논문에서는 공간구조물의 가장 간단한 구조형식인 아치를 대상으로, 수평 상하지진동의 동시입력에 대한 순간가속도 응답배율의 특성을 고찰하였다. 또한, 지진동의 단독입력시의 등가정적지진력을 이용하여, 지진동의 동시입력에 대한 등가정적지진력을 제안하였다.
The failure of piping in nuclear power plants and various plant facilities is mainly caused by vibration due to fluid pressure, dead load, temperature expansion and earthquake load in the pipe. Repeated stresses due to vibration cause local fatigue failure on pipe joints where stress is concentrated, which is a factor that hinders the safety of the structure. Therefore, the vibration problem is solved by installing devices to solve the vibration problem in the pipe where vibration frequently occurs. In this study, we developed a damper that damps the dynamic load generated by piping using the friction pendulum principle, and analyzed the behavior curve of the MER-Spring specimen to be used.
이 논문에서는 원자력발전소나 각종 플랜트 시설물에서 배관을 보호하기 위하여 마찰방식을 이용한 댐퍼를 개발하여 성능을 분석 하는 연구를 수행하였다. 마찰방식댐퍼는 MER-Spring에 압축력을 가하여 베어링과 샤프트에 마찰력을 발생시켜 진동을 감쇠시키는 장치이 다. 댐퍼의 성능을 분석하기 위하여 MER-Spring과 마찰재의 재료특성을 분석하고, 마찰의 영향에 대한 연구를 수행하였으며, 이에 대한 거동 방정식을 수립하였다. 또한 재료의 변형 여부를 판단 및 수립된 거동방정식의 신뢰성 검토를 위하여 시작품을 제작하였고 시편으로 제작된 댐 퍼의 성능 시험과 유한요소 해석을 통하여 이를 분석하였다. 그 결과, 재료의 신뢰성이 확인되었고 마찰계수는 속도에 따른 보정이 필요하며, 반복재하 실험 및 유한요소해석 결과 우수한 결과를 나타냄을 확인하였다. 또한, 추후에 동적하중에 대한 검토가 수행되어 이 연구의 성과가 더 넓은 범위에 적용되었으면 한다.
In this paper, to protect the piping in nuclear power plants and various plant facilities, we have developed a damper using the friction method and carried out a study to analyze the performance. Friction typed damper means a device for attenuating vibration by generating a frictional force to the bearing and the shaft by applying a compressive force to the MER-Spring. In order to analyze the performance of the damper, the properties of MER-Spring and friction materials were analyzed, a study on the effects of friction was carried out, and the behavior of this equation was established. And, to determine whether deformation of the material and to examine the reliability of the behavior of equation established, prototypes was produced and, through a performance test and finite element analysis of a damper made of specimens, they were analyzed.
본 연구는 고립파를 이용하여 수중에 설치된 연직구조물에 작용하는 지진해일 파력 측정 수리실험을 수행하였다. 다수의 파압계를 이용하여 구조물에 작용하는 파압분포를 측정하였고 측정된 파압분포를 통해 파력을 산출하였다. 측정된 실험결과를 바탕으로 해안구조물 설계에 사용되는 파압예측 경험식과 비교하였고 구조물 단면현상에 따라 파압분포의 차이를 분석하였다. 또한, 구조물 전 후면에서 파고측정을 통해 입사파와 투과파를 비교하였으며 구조물의 형상이 파고변화에 미치는 영향을 분석하였다.
The diffraction of waves by three bottom fixed vertical circular cylinders is investigated by using the boundary element method. This method has been successfully applied to the isolated vertical circular cylinder and now is used to study the interaction between waves and multiple vertical cylinders. In this paper, a numerical analysis by the boundary element method is developed by the linear potential theory. The numerical analysis by the boundary element method is based on Green's second theorem and introduced to an integral equation for the fluid velocity potential around the vertical circular cylinders. To verify this method, the results obtained in present study are compared with the results computed by the multiple scattering method. The results of the comparisons show strong agreement. Also in this paper, several numerical examples are given to illustrate the effects of various parameters on the wave exciting force such are the separation distance, the wave number and the incident wave angle. This numerical computation method might be used broadly for the design of various offshore structures to be constructed in the future.