Researching and estimating the ecological characteristics of target fish species is crucial for fisheries resource management. The results of these estimates significantly influence stock assessments and management reference points such as size limit and closed seasons. Recently, ecological characteristics have been changing due to overfishing, climate change, and marine pollution, making continuous estimation and monitoring essential. This study analyzed the ecological changes in small yellow croaker (Larimichthys polyactis) resources in Korea over 24 years (2000-2023) using biological data (growth and gonad traits). By estimating the annual length-weight relationship and length at maturity (L50 and L95), we interpreted the numerical trends of early maturation due to resource depletion. The parameter b of the length-weight relationship, indicating the nutritional status of the resources, showed a slight increase over the years, suggesting relatively good nutritional status (b > 3.0) during most periods. Trend analysis between length at maturity and biomass indicated that as biomass decreased, maturity length also decreased.
The experimental fish transplanted from China in 2015 was used after seedling production and cultivated. Breeding management for experiment was carried out from October 2020 to February 2021. Also, it succeeded in inducing artificial maturation three to four months earlier than wild broodstock and secured good quality fertilized eggs. The average size of fertilized eggs was 1.22 mm, at 20℃ Blastodisc (15 minutes post-fertilization), 2 cell (50 minutes), 4 cell (1 hours), 8 cell (2 hours), 16 cell (2 hours and 30 minutes), 32 cell (2 hours and 50 minutes), morula (3 hours), blastula (8 hours), gastrula (15 hours), skull formation (20 hours), organ formation (30 hours) and hatching yolk larvae stage (35 hours). The total length of the just hatched larvae were 2.50 ± 2 mm, and then gain growth of 42.5 mm by 60 days, reaching 45 ± 5 mm.
The concern on the greenhouse gas emission is strongly increasing globally. In fishery industry section, the greenhouse gas emissions are an important issue according to The Paris Climate Change Accord in 2015. The Korean government has a plan to reduce the GHG emissions as 4.8% compared to the BAU in fisheries until 2020. Furthermore, the Korean government has also declared to achieve the carbon neutrality in 2050 at the Climate Adaptation Summit 2021. However, the investigation on the GHG emissions from Korean fisheries did not carry out extensively. Most studies on GHG emissions from Korean fishery have dealt with the GHG emissions by fishery classification so far. However, follow-up studies related to GHG emissions from fisheries need to evaluate the GHG emission level by species to prepare the adoption of environmental labels and declarations (ISO 14020). The purpose of this research is to investigate which degree of GHG emitted to produce the species (hairtail and small yellow croaker) from various fisheries. Here, we calculated the GHG emission to produce the species from the fisheries using the Life Cycle Assessment method. The system boundary and input parameters for each process level are defined for the LCA analysis. The fuel use coefficients of the fisheries for the species are also calculated according to the fuel type. The GHG emissions from sea activities by the fisheries will be dealt with. Furthermore, the GHG emissions for producing the unit weight species and annual production are calculated by fishery classification. The results will be helpful to understand the circumstances of GHG emissions from Korean fisheries.
본 연구에서는 외부형태적으로 매우 비슷한 참조기 (Larimichthys polyactis) 와 부세 (L. crocea)의 두 종 간 구분을 위해 계측형질 분석을 포함한 몇가지 기법들을 수행하였다. 총 48개의 계측형질 중 4개의 유의한 차이를 보이는 계측형질이 파악되었으며 (p<0.05) classical dimension에서는 유의한 차이를 보이는 계측형질은 없었다 (p>0.05). 오히려, 2가지의 truss dimension (Insertion of dorsal fin base - origin of pectoral fin base와 Origin of anal fin base - origin of pectoral fin base)와 2가지의 head part dimension (Most anterior extension of the head - above of eye와 Above of eye - posterior aspect of operculum)에서는 유의한 차이가 나타났다 (p<0.05). 하지만, 이러한 4가지 계측형질 중 head part dimension의 Above of eye - posterior aspect of operculum의 계측형질을 제외한 나머지 3가지 계측형질들에서 부세가 참조기에 비해 더 큰 수치를 나타내었다 (p<0.05). X-ray 분석 결과 curved vertebral column에서 부세는 45.1±2.34° 로 참조기의 38.4±1.82°에 비해 8.4% 더 큰 수치를 나타내었다 (p<0.05). 머리부위의 표피를 제거한 후의 유상돌기 는 두 종에 모두 존재하여 일반적으로 참조기에서만 유상 돌기가 존재한다고 알려진 바와는 달리, 유상돌기는 두 종을 구분하기 위한 형질로 볼 수 없었다. 본 연구 결과는 참조기와 부세에서 일부 외부 체형에 의해 명확히 구분 가능함을 시사한다.
The small yellow croaker (Larimichthys polyactis) is one of the representative high-class fish species in Korea. The catch of small yellow croaker in adjacent water fisheries has been continuously decreasing from 59,226 tons in 2011 to 19,271 tons in 2016. The small yellow croaker is caught by gillnet, stow net and bottom trawl, among which about 55~65% is caught by gillnet. For the sustainable use of small yellow croaker, the fishing power of small yellow croaker drift gillnet is very important. Therefore, the change of fishing power index were analyzed to identify the development of the vessel and gear technology that may have improved the fishing efficiency of the small yellow croaker drift gillnet fishery from 1960s to 2010s. Gross tonnage and horse power per fishing vessel was increased annually. The mesh size was 75.0 mm in the 1960s, but reduced to 60.6 mm in the 1980s and to 51.0 mm in the 2000s. In the 1960s, it was hauled out by manpower. However, the net hauler were modernized and supply rate was also increased since 1970. Due to the mechanization of the net hauler, the number (length) of used net gradually increased from 1.5 km in the 1960s to 7.5 km in the mid-1980s and to 15 km in 2010. Colour fish finders and positioning system were introduced and utilized from the mid-1980s. Surveys on the supply and upgrading of fishing equipment utilized visiting research. Therefore, the relative fishing power index in the small yellow croaker drift gillnet fishery increased from 1.0 in 1980 to 0.8 in 1970, to 1.1 in 1990, to 1.6 in 2000 and to 1.9 in 2010. The results are expected to contribute to reasonable fisheries stock management of the small yellow croaker drift gillnet fishery.
Yield-per-recruit (YPR) analysis is used to provide management guidance for the efficient use of a fish cohort. However, the individual fish price per unit weight of small yellow croaker (Larimichthys polyactis) or hairtail (Trichiurus lepturus) increases dramatically by size in Korea. Therefore, age-based production value-per-recruit (PPR) analysis has recently been developed (Zhang et al., 2014). Since age determination requires a substantial amount of money and time and it is even impossible for some fish species, it is difficult to obtain age information to apply the age-based PPR model. Thus, we attempted to develop an alternative method, which uses length data rather than age information, called the length-based PPR analysis. The results revealed that length-based PPR analysis was much more conservative for stock management than the YPR analysis. Furthermore, the PPR analysis was more economically beneficial than the YPR analysis, which can prevent the fish stock from the economic overfishing. In conclusion, the length-based PPR analysis could be a proper approach for stock assessment in the case that the individual fish price per unit weight increases dramatically by size, and this analysis is useful to obtain vital management parameters under data-deficient situation when traditional stock assessment methods are not applicable.
Yield per recruit model is the most popular method for fisheries stock assessment. However, stock assessment using yield per recruit model can lead to recruitment overfishing as this model only considers the maximum yield per recruit without spawning biomass for reproduction. For this reason, spawning biomass per recruit model which reveals variations of spawning stock biomass per fishing mortality (F) and age at first capture (tc) is considered as more proper method for stock assessment. There are mainly two methods for spawning biomass per recruit model known as age specific selectivity method and knife– edged selectivity method. In the knife–edged selectivity method, the spawning biomass per recruit has been often calculated using biomass per recruit value by multiplying the maturity ratio of the recruited age. But the maturity ratio in the previous method was not considered properly in previous studies. Therefore, a new method of the knife–edged selectivity model was suggested in this study using a weighted average of the maturity ratio for ages from the first capture to the lifespan. The optimum fishing mortality in terms of F35% which was obtained from the new method was compared to the old method for small yellow croaker stock in Korea. The value of F35% using the new knife–edged selectivity model was 0.302/year and the value using the old model was 0.349/year. However, the value of F35% using the age specific selectivity model was estimated as 0.320/year which was closer to the value from the new knife–edged selectivity model.