검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 327

        201.
        2019.10 서비스 종료(열람 제한)
        케이블 교량에서 케이블은 가장 중요한 구조부재의 하나이며, 케이블의 내부 장력을 모니터링하는 것은 케이블 교량 유지 관리에서 필수적이다. 본 연구에서는 케이블 장력을 효율적으로 모니터링하기 위한 무선센서 기반의 장력추정 자동화 시스템을 개발하였다. 무선센서에 포함된 가속도계를 통해 케이블의 진동을 계측하고, 진동기반 장력추정법을 통해 케이블의 장력을 추정하였다. 장력추정 절차를 자동화하기 위해 가장 널리 사용되고 있는 기계학습법의 하나인 합성곱 신경망을 도입하였다. 개발된 자동화 기법은 싱글보드 컴퓨터의 하나인 라즈베리파이3 모델B+에 구현하였으며, 실험실에서 모형 케이블을 이용하여 성능을 검증하였다. 케이블의 장력이 바뀌는 경우에도 개발된 시스템은 자동으로 변화된 장력의 크기를 잘 계측할 수 있는 것을 확인하였다.
        202.
        2019.10 서비스 종료(열람 제한)
        본 연구는 현재 상태에서 콘크리트 내부의 균열, 공극, 결함 등을 식별 및 판단하고 일반적인 초음파법 및 반발경도법 외에 S-wave 및 R-wave를 사용하여 미래의 머신러닝 기법의 적용 가능성을 설명합니다. 또한, 다양한 머신러닝 기법 중에서 서포트벡터머신(SVM) 및 인공신경망(ANN)을 사용하여 콘크리트 건전성 평가에 대한 모델 개발을 통해 실험데이터의 예측 결과에 대한 비교분석을 진행하였고 최종적으로 SVM 모델을 제시하였다.
        203.
        2019.09 KCI 등재 서비스 종료(열람 제한)
        Ensemble verification and prediction of low-level wind shear (LLWS) are an important matter for airplane landing and management. In this study, we compared the prediction performance of LLWS forecasts of ensemble mean, multiple regression model and long short-term memory (LSTM), which belong to the family of recurrent neural network based on the grid points over the Jeju area. The prediction skills of methods were compared by mean absolute error. We found that the prediction skills of forecasts of LSTM were better than the bias-corrected forecasts in terms of deterministic prediction.
        204.
        2019.09 KCI 등재 서비스 종료(열람 제한)
        The video game Tetris is one of most popular game and it is well known that its game rule can be modelled as MDP (Markov Decision Process). This paper presents a DQN (Deep Q-Network) based game agent for Tetris game. To this end, the state is defined as the captured image of the Tetris game board and the reward is designed as a function of cleared lines by the game agent. The action is defined as left, right, rotate, drop, and their finite number of combinations. In addition to this, PER (Prioritized Experience Replay) is employed in order to enhance learning performance. To train the network more than 500000 episodes are used. The game agent employs the trained network to make a decision. The performance of the developed algorithm is validated via not only simulation but also real Tetris robot agent which is made of a camera, two Arduinos, 4 servo motors, and artificial fingers by 3D printing.
        205.
        2019.06 KCI 등재 서비스 종료(열람 제한)
        The optimal grasping point of the object varies depending on the shape of the object, such as the weight, the material, the grasping contact with the robot hand, and the grasping force. In order to derive the optimal grasping points for each object by a three fingered robot hand, optimal point and posture have been derived based on the geometry of the object and the hand using the artificial neural network. The optimal grasping cost function has been derived by constructing the cost function based on the probability density function of the normal distribution. Considering the characteristics of the object and the robot hand, the optimum height and width have been set to grasp the object by the robot hand. The resultant force between the contact area of the robot finger and the object has been estimated from the grasping force of the robot finger and the gravitational force of the object. In addition to these, the geometrical and gravitational center points of the object have been considered in obtaining the optimum grasping position of the robot finger and the object using the artificial neural network. To show the effectiveness of the proposed algorithm, the friction cone for the stable grasping operation has been modeled through the grasping experiments.
        206.
        2019.06 KCI 등재 서비스 종료(열람 제한)
        This paper presents a 6-DOF relocalization using a 3D laser scanner and a monocular camera. A relocalization problem in robotics is to estimate pose of sensor when a robot revisits the area. A deep convolutional neural network (CNN) is designed to regress 6-DOF sensor pose and trained using both RGB image and 3D point cloud information in end-to-end manner. We generate the new input that consists of RGB and range information. After training step, the relocalization system results in the pose of the sensor corresponding to each input when a new input is received. However, most of cases, mobile robot navigation system has successive sensor measurements. In order to improve the localization performance, the output of CNN is used for measurements of the particle filter that smooth the trajectory. We evaluate our relocalization method on real world datasets using a mobile robot platform.
        207.
        2019.02 KCI 등재 서비스 종료(열람 제한)
        중고선은 신조선과 달리 시장참여자에게 즉각적인 시장 진출입 기회를 제공하기 때문에 해운산업에서 중요한 시장이라 할 수 있 다. 중고선 거래 시 정확한 선가 추정은 향후 장기적인 자본비용의 부담과 직접적인 관련이 있기 때문에 투자의사결정에서 상당히 중요한 요소가 된다. 기존의 중고선시장과 관련된 연구들은 시장의 효율성검증에 치우쳐 있어 정확한 중고선가 추정을 위한 연구는 부족한 실정이다. 본 연구에서는 중고선박 가치추정에 전통적인 계량모델보다 기존연구에서 시도되지 않았던 인공신경망모델을 새롭게 제안하였다. 문헌연구를 통해 중고선 가격에 영향을 미치는 6개 요인(운임, 신조선가격, 총 선복대비 발주량, 해체선 가격, 선령, 사이즈)을 선정하였고, 데이터는 2016년 1월부터 2018년 12월까지 Clarkson에 보고된 파나막스 중고선의 실거래 기록 366건을 이용하였다. 변수선정을 위하여 상관분석과 단계적 회귀분석 실시한 결과 최종적으로 운임, 선령, 사이즈 3개의 변수가 채택되었다. 모델의 설계는 10분할 교차검증으로 인공신경망모델의 파라미터들을 추정하여 진행되었다. 인공신경망 모델의 중고선 가치추정치를 단순 단계적 회귀모형과 비교한 결과 인공신경망모델의 성능이 우수함을 확인하였다. 이 연구는 중고선 선가추정에 미치는 요인들에 대한 통계적인 검증, 성능개선을 위한 기계학습기반의 인공신경망 모델 활용이라는 측면에서 차별적 의미가 있다. 또한 정확한 선가 추정이 요구되는 실무에서 통계적인 합리성과 결과의 정확성이 동시에 만족되는 과학적 모델을 제시하여 실무적으로도 도움이 될 것으로 기대한다.
        208.
        2018.12 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 순환신경망을 이용한 댐 유입량 예측모형의 적용성 검토를 목적으로 하고 있으며, 이를 위해 소양강댐 유역 및 충주댐 유역을 대상 으로 그간 댐 운영을 통해 축적된 기상 및 수문 빅데이터를 활용하여 인공신경망 모형과 엘만 순환신경망 모형을 구축하였다. 모형의 학습과 예측 을 위하여 유역별 유입량, 강우량, 기온, 일조시간, 풍속자료가 입력자료로 사용되었고 10일간 일별 댐유입량 자료가 모델의 출력자료로 구조화 하여 학습을 진행한 후 검증을 목적으로 2016년 7월 ~ 2018년 6월까지 2개년에 대한 댐 유입량 예측을 수행하였다. 학습된 모형의 유입량 예측 결과를 비교분석한 결과, 소양강댐 유역에서는 인공신경망 모형과 순환신경망 모형 간 예측성능은 큰 차이를 보이지 않았으며, 충주댐 유역에서는 순환신경망 모형의 예측 결과가 인공신경망 모형에 비해 비교적 우수한 성능을 보임에 따라 엘만 순환신경망을 이용하여 댐 유입량 예측모형을 구축 할 경우 예측성능은 기존의 인공신경망 모형과 비슷하거나 다소 우수할 것으로 판단된다. 또한 엘만 순환신경망은 갈수기 댐 유입량 예측에 있어서 인공신경망에 비해 예측결과의 재현성이 우수한 것으로 나타났으며, 엘만 순환신경망 학습에 있어 다중 은닉층 구조가 단일 은닉층 구조보다 예측 성능 향상에 효과적인 것으로 분석되었다.
        209.
        2018.11 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 미급수지역의 주요 수원인 지하수의 수위 변동 상황을 기반으로 한 미급수지역 가뭄 예보 기법 개발을 목적으로 하였다. 이를 위해 지역화된 표준지하수지수(SGI)와 표준강수지수들(SPIs)의 상관관계를 분석하였다. 관측 지하수위로부터 산정된 SGI의 자기회귀 특성 및 지속기간별 SPI와 SGI의 상관관계를 동시에 고려할 수 있는 NARX (nonlinear autoregressive exogenous model) 인공신경망 모형을 이용하여 지역별 예측모형을 구축하였다. 학습기간 동안 관측 SGI와 모델 출력 SGI의 상관계수는 0.7 이상인 곳이 전체 167개 지역별 모형 중 146개(87%)로 상관성이 높은 것으로 분석되었다. 적용기간에 대해서는 평균제곱근오차와 상관계수로 모형을 평가하였다. 본 연구를 통해 기상청에서 제공하는 59 개 관측소별 강수량 전망 값으로부터 산정된 지속기간별 SPI와 관측된 지하수위를 이용한 지역별 SGI 전망이 가능하도록 하였으며, 미급수지역의 가뭄 예‧경보를 위한 기초자료로 활용이 가능토록 하였다.
        210.
        2018.10 KCI 등재 서비스 종료(열람 제한)
        최근 다수의 분야에서 딥 러닝을 통한 연구 성과들이 사람의 판단력에 근접하는 결과를 보여주고 있다. 그리고 게임 산업에서는 온라인 커뮤니티, SNS의 활성화가 게임 흥행 여부를 결정할 정도로 중요성이 높아지고 있다. 본 연구는 딥 러닝을 이용해 온라인 커뮤니티, SNS에서 활동할 수 있는 시스템을 구성하고, 온라인 공간에서 사람들이 작성한 텍스트를 읽고 그에 대한 반응을 생성하고 스케쥴에 따라 트위터에 올리는 것을 목표로 한다. 순환 신경망(Recurrent Neural Network)을 이용해 텍스트를 생성하고 글 작성 스케쥴을 생성하는 모델들을 구성했고, 생성한 시각에 맞춰 모델들에 뉴스 제목을 입력해 댓글을 출력 받고 트위터에 작성하는 프로그램을 구현했다. 본 연구 결과는 온라인 게임 커뮤니티 활성화, Q&A 서비스 등에 적용이 가능할 것으로 예상된다.
        211.
        2018.10 KCI 등재 서비스 종료(열람 제한)
        영상 인식 기술은 평면 영상에 대해서 많이 연구되고 그 성능 또한 발전하고 있다. 그러나 평면 영상이 아닌 구면 파노라마 영상과 다양한 환경에서 주어지는 특수한 형태의 영상에 대한 인식은 평면과 다르게 기하학적인 왜곡으로 인해서 많은 어려움이 따른다. 본 논문에서는 평면영상의 인식 기술에서 최근 각광받는 훈련을 통한 신경망 인식 기법이 구면 파노라마 영상의 인식에서도 쓰일 수 있음을 보인다. 또한 구면 영상에 대한 기존 신경망 모델의 인식률을 높이기 위해서 큐브맵 변환을 활용하는 방법을 제시한다.
        212.
        2018.06 KCI 등재 서비스 종료(열람 제한)
        최근 기후변화 및 유역개발로 인하여 메콩강 유역의 수문환경이 급격히 변화하고 있으며, 메콩강을 공유하는 국가의 수재해 예방 및 지속가능한 수자원개발을 위해서는 메콩강 주요지점에서의 유량 정보의 분석 및 예측이 요구된다. 본 연구에서는 물리적 기반의 수문모형인 SWAT과 데이터기반 딥러닝 알고리즘인 LSTM을 이용하여 메콩강 하류 Kratie 지점의 유출모의를 수행하고, 유출모의 정확도 및 두 가지 방법론의 장 ․ 단점을 비교 ․ 분석한다. SWAT 모형의 구축을 위해 범용 입력자료(지형: HydroSHED, 토지이용: GLCF-MODIS, 토양: FAO-Soil map, 강우: APHRODITE 등)을 이용하였으며 warming-up 및 매개변수 보정 후 2003~2007년 일유량 모의를 수행하였다. LSTM을 이용한 유출모의의 경우, 딥러닝 오픈소스 라이브러리인 TensorFlow를 활용하여 Kratie 지점기준 메콩강 상류 10개 수위관측소의 두 기간(2000~2002, 2008~2014) 일수위 정보만을 이용하여 심층신경망을 학습하고, SWAT 모형과 마찬가지로 2003~2007년을 대상으로 Kratie 지점에 대한 일수위 모의 후 수위-유량관계곡선식을 이용하여 유출량으로 환산하였다. 두 모형의 모의성능 비교 ․ 검토를 위하여 모의기간에 대해 NSE (Nash-Sutcliffe Efficiency)을 산정한 결과, SWAT은 0.9, LSTM은 보다 높은 0.99의 정확도를 나타내는 것으로 분석되었다. 메콩강과 같은 대유역의 특정 지점에 대한 수문시계열 자료의 모의를 위해서는 다양한 입력자료를 요구하는 물리적 수문모형 대신 선행시계열자료의 변동성을 기억 ․ 학습하여 이를 예측에 반영하는 LSTM 기법 등 데이터기반의 심층신경망 모형의 적용이 가능할 것으로 판단된다.
        213.
        2018.05 KCI 등재 서비스 종료(열람 제한)
        지역빈도해석은 대상 지점과 수문학적 동질성을 만족하는 주변 지점을 하나의 지역으로 보고 빈도해석을 수행하는 방법이다. 따라서 동질한 지역의 구분은 지역빈도해석에 있어서 가장 중요한 가정이라고 할 수 있다. 이에 본 연구에서는 인공신경망 기법중 하나인 자기조직화지도(self-organizing map, SOM) 기법을 활용하여 강우 지역빈도해석을 위한 동질 강수 지역을 구분하였다. 지역구분 인자로는 지형 정보와 시 단위 강우자료를 활용하였다. 최적 SOM 지도 구성을 위해 정량적 오차와 위상관계 오차를 활용하였다. 그 결과 7 × 6 배열의 42개의 노드를 갖는 모형을 선정하였고 최종적으로 강우 지역빈도해석을 위해 6개의 군집으로 구분하였다. 동질성 검토 결과 6개의 군집 모두 동질한 지역으로 나타났으며 기존의 유사하게 구분된 지역들과 이질성 척도를 비교하였을 때 좀 더 안정적인 지역 구분결과를 나타내는 것을 확인하였다.
        214.
        2018.04 KCI 등재 서비스 종료(열람 제한)
        최근의 인공 신경망(Neural Network) 기법은 전통적인 분류 문제와 군집화 문제 해결에서 벗어나 이미지 생성 같은 컨텐츠 생성에서도 좋은 성능을 보이고 있다. 본 연구에서는 차세대 컨텐츠 생성 기법으로 인공신경망을 이용한 이미지 생성기법을 제안한다. 제안하는 인공신경망 모델은 두 개의 이미지를 입력받아서 하나의 이미지에서는 색상을, 다른 이미지에서는 모양을 가져와 새로운 이미지로 조합해낸다. 이 모델은 컨볼루션 인공신경망(Convolutional Neural Network)으로 제작되 었으며 각각 이미지에서 색상과 모양을 추출해내는 두 개의 인코더와 각 인코더의 값을 모두 넘겨 받아 하나의 조합이 되는 이미지를 생성해내는 하나의 디코더로 구성이 되어있다. 본 연구의 성과는 저비용으로 게임 개발 프로세스 상 다양한 2차원 이미지 생성 및 보정 작업에 활용될 수 있다.
        215.
        2018.04 서비스 종료(열람 제한)
        This paper presents a convolutional neural network to automatically conduct the peak picking in frequency domain of structural responses. The peaks in frequency domain have a high potential to be the natural frequencies, which are one of the important indicator to be used for structural health monitoring purposes, such as damage detection, cable tension estimation, and finite element model updating. In general, the peaks with the corresponding natural frequencies are manually selected by the users from the frequency domain. Although this previous approach is possible to simply extract the candidate of natural frequencies, it is inappropriate in the practical applications of the long-term monitoring and the implementation for wireless smart sensor. To overcome the drawbacks, this study proposes the convolutional neural network that can automatically identify the peaks with the corresponding natural frequencies from the frequency domain of structural responses.
        216.
        2018.02 KCI 등재 서비스 종료(열람 제한)
        This paper presents a vision-based fall detection system to automatically monitor and detect people’s fall accidents, particularly those of elderly people or patients. For video analysis, the system should be able to extract both spatial and temporal features so that the model captures appearance and motion information simultaneously. Our approach is based on 3-dimensional convolutional neural networks, which can learn spatiotemporal features. In addition, we adopts a thermal camera in order to handle several issues regarding usability, day and night surveillance and privacy concerns. We design a pan-tilt camera with two actuators to extend the range of view. Performance is evaluated on our thermal dataset: TCL Fall Detection Dataset. The proposed model achieves 90.2% average clip accuracy which is better than other approaches.
        217.
        2018.02 KCI 등재 서비스 종료(열람 제한)
        Planetary global localization is necessary for long-range rover missions in which communication with command center operator is throttled due to the long distance. There has been number of researches that address this problem by exploiting and matching rover surroundings with global digital elevation maps (DEM). Using conventional methods for matching, however, is challenging due to artifacts in both DEM rendered images, and/or rover 2D images caused by DEM low resolution, rover image illumination variations and small terrain features. In this work, we use train CNN discriminator to match rover 2D image with DEM rendered images using conditional Generative Adversarial Network architecture (cGAN). We then use this discriminator to search an uncertainty bound given by visual odometry (VO) error bound to estimate rover optimal location and orientation. We demonstrate our network capability to learn to translate rover image into DEM simulated image and match them using Devon Island dataset. The experimental results show that our proposed approach achieves ~74% mean average precision.
        218.
        2018.01 KCI 등재 서비스 종료(열람 제한)
        하천 관리에 있어 도달시간은 중요한 인자 중의 하나이다. 특히 사회적으로 다양한 하천 활용에 대한 요구가 높아짐에 따라 친수공간으로써 하천에서의 정확한 도달시간 산정은 홍수시 주민 대피 시간 확보 등을 위해서 매우 중요하다. 그러나 과거 도달시간 산정에 대한 연구는 자연 하천의 복합 유역에서의 단일 수문사상에 대하여 연구가 수행되어왔으며, 도심하천의 단일유역을 대상으로 복합 수문 사상에 대한 도달시간 산정방법의 개발은 미흡한 실정이다. 따라서 최근 집중호우에 의하여 빈번한 침수 피해가 발생된 부산광역시 대표 도심하천인 온천천 유역에 대하여 과거 10년(2006~2015년) 동안의 강우-유출량 자료를 이용하여 도달시간을 산정하였고, Matlab 기반의 인공신경망 기법을 이용하여 신뢰성을 검토하였다. 12시간 이상 무강우를 기준으로 총 254개의 강우 사상을 분리하였고, 이를 바탕으로 총 강우량, 총 유출량, 첨두 강우량/총 강우량, 첨두 유출량/총 유출량, 지체시간, 도달시간 등 총 6개의 변수를 산정하여 인공신경망 모형의 훈련 및 검증에 활용하였다. 그 결과 훈련에 과 예측 및 검증에 활용된 입력 변수의 상관관계는 각 각 0.807 및 0.728로 나타났으며, 연구결과를 바탕으로 도심하천의 도달시간 산정결과의 신뢰성 분석에 이를 활용할 수 있을 것으로 판단된다.
        219.
        2018.01 KCI 등재 서비스 종료(열람 제한)
        본 연구는 인공신경망을 이용해 철골모멘트골조의 접합부 손상을 예측하는 기법을 제안한다. 인공신경망의 입력층에는 기둥 부재 의 휨모멘트, 고유진동수, 모드형상 정보가 사용되며, 출력층에는 구조물 접합부의 회전강성 손상지표가 사용한다. 손상지표는 각 접합부의 손 상정도를 의미한다. 5층 철골모멘트골조 예제의 수치해석을 통해 훈련 및 검증용 데이터를 생성한다. 총 829가지의 손상 시나리오가 고려된다. 시뮬레이션은 OpenSees를 이용해 반복 실행하여 데이터를 얻도록 하였으며, 훈련용 데이터를 생성할 때 회전 강성의 손상은 1.0, 0.75, 0.5 등 세 가지 중 하나의 값을 가지도록 하였다. 예제 검증을 통해 제시하는 기법은 손상 위치 및 수준을 정확하게 예측하는 것으로 나타났다. 제시하는 기법은 손상지표, 1차, 2차 고유진동수 및 모드형상 등에 대해 매우 유사한 결과를 제시하는 것으로 확인되었다.
        220.
        2017.11 KCI 등재 서비스 종료(열람 제한)
        In this paper, we propose a jellyfish distribution recognition and monitoring system using a UAV (unmanned aerial vehicle). The UAV was designed to satisfy the requirements for flight in ocean environment. The target jellyfish, Aurelia aurita, is recognized through convolutional neural network and its distribution is calculated. The modified deep neural network architecture has been developed to have reliable recognition accuracy and fast operation speed. Recognition speed is about 400 times faster than GoogLeNet by using a lightweight network architecture. We also introduce the method for selecting candidates to be used as inputs to the proposed network. The recognition accuracy of the jellyfish is improved by removing the probability value of the meaningless class among the probability vectors of the evaluated input image and re-evaluating it by normalization. The jellyfish distribution is calculated based on the unit jellyfish image recognized. The distribution level is defined by using the novelty concept of the distribution map buffer.