The milling characteristics of rice using different milling methods (dry and wet) were investigated. Generally, average particle sizes of dry-milling flours were bigger than those of wet-milling flours due to low moisture content. Three theoretical models for milling, such as the Rittinger, Kick, and Bond model, were applied to characterize the milling process of rice. The wet-milling method showed higher value milling constants including Bond’s work index. Baeksulgi was used to study the effect of the milling method and particle size on rice flour’s physicochemical property (water content, color value, and texture). Moisture content and hardness of Baeksulgi were smaller as the particle size became smaller. L value of Baeksulgi was greater as the particle size became smaller. The energy requirement for the milling of grains to obtain a suitable size of particles was estimated by the grinding models. The results of our study might provide a systematic way to estimate the energy requirement to obtain a suitable particle size by milling