검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 135

        2.
        2023.11 구독 인증기관·개인회원 무료
        Currently, the Korea Atomic Energy Research Institute is conducting research on the development of technology to reduce the disposal area for SF (Spent nuclear Fuel). If the main radionuclides contained in SF can be separated and recovered according to their characteristics (long half-life, high mobility and high heat load) and uranium oxide which is expected to be the final residue, can be made into solids, the burden of the permanent disposal area of the SF will be greatly reduced. The waste form that end up in the repository must be verified for ease of manufacture and stability of the block. And, in order to increase the loading efficiency, a large block manufacturing technology is needed. This study describes the background of introducing PSA (Particle Size Analyzer) which is one of the necessary equipment for manufacturing UO2 blocks using slip casting, the method of using the equipment and performance verification of the equipment using standard samples. The particle size affects the sintering quality by the way the particles rearrange themselves during sintering. Powders of small particles are generally less free flowing and more difficult to compress, they form thin pores between the particles and sinter to higher density. In contrast, larger particle has a lower sintered density. Therefore, accurate particle size measurement and the selection of a suitable particle size are important. For this purpose, a PSA was installed in nuclear cycle experiment research center. To verify the performance of the equipment, a standard sample of 1.025 μm was analyzed. We got an average particle size of 1.0293 μm and standard deviation of 0.0668 μm. This value was within the uncertainty(±0.018 μm) of the sample’s certificate. In the future, this equipment will measure the size of UO2 (depleted uranium) powder and to produce large scale uranium oxide blocks.
        3.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Thermite welding is an exceptional process that does not require additional energy supplies, resulting in welded joints that exhibit mechanical properties and conductivity equivalent to those of the parent materials. The global adoption of thermite welding is growing across various industries. However, in Korea, limited research is being conducted on the core technology of thermite welding. Currently, domestic production of thermite powder in Korea involves recycling copper oxide (CuO). Unfortunately, controlling the particle size of waste CuO poses challenges, leading to the unwanted formation of pores and cracks during thermite welding. In this study, we investigate the influence of powder particle size on thermite welding in the production of Cu-thermite powder using waste CuO. We conduct the ball milling process for 0.5–24 h using recycled CuO. The evolution of the powder shape and size is analyzed using particle size analysis and scanning electron microscopy (SEM). Furthermore, we examine the thermal reaction characteristics through differential scanning calorimetry. Additionally, the microstructures of the welded samples are observed using optical microscopy and SEM to evaluate the impact of powder particle size on weldability. Lastly, hardness measurements are performed to assess the strengths of the welded materials.
        4,000원
        4.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Lithium (Li) is a key resource driving the rapid growth of the electric vehicle industry globally, with demand and prices continually on the rise. To address the limited reserves of major lithium sources such as rock and brine, research is underway on seawater Li extraction using electrodialysis and Li-ion selective membranes. Lithium lanthanum titanate (LLTO), an oxide solid electrolyte for all-solid-state batteries, is a promising Li-ion selective membrane. An important factor in enhancing its performance is employing the powder synthesis process. In this study, the LLTO powder is prepared using two synthesis methods: sol-gel reaction (SGR) and solid-state reaction (SSR). Additionally, the powder size and uniformity are compared, which are indices related to membrane performance. X-ray diffraction and scanning electron microscopy are employed for determining characterization, with crystallite size analysis through the full width at half maximum parameter for the powders prepared using the two synthetic methods. The findings reveal that the powder SGR-synthesized powder exhibits smaller and more uniform characteristics (0.68 times smaller crystal size) than its SSR counterpart. This discovery lays the groundwork for optimizing the powder manufacturing process of LLTO membranes, making them more suitable for various applications, including manufacturing high-performance membranes or mass production of membranes.
        4,000원
        5.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Ag/WC electrical contacts were prepared via powder metallurgy using 60 wt% Ag, 40 wt% WC, and small amounts of Co3O4 with varying WC particle sizes. After the fabrication of the contact materials, microstructure observations confirmed that WC-1 had an average grain size (AGS) of 0.27 μm, and WC-2 had an AGS of 0.35 μm. The Ag matrix in WC-1 formed fine grains, whereas a significantly larger and continuous growth of the Ag matrix was observed in WC-2. This indicates the different flow behaviors of liquid Ag during the sintering process owing to the different WC sizes. The electrical conductivities of WC-1 and WC-2 were 47.8% and 60.4%, respectively, and had a significant influence on the Ag matrix. In particular, WC-2 exhibited extremely high electrical conductivity owing to its large and continuous Ag-grain matrix. The yield strengths of WC-1 and WC-2 after compression tests were 349.9 MPa and 280.7 MPa, respectively. The high yield strength of WC-1 can be attributed to the Hall–Petch effect, whereas the low yield strength of WC-2 can be explained by the high fraction of high-angle boundaries (HAB) between the WC grains. Furthermore, the relationships between the microstructure, electrical/mechanical properties, and deformation mechanisms were evaluated.
        4,000원
        6.
        2022.12 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 실버 파우더의 입자 크기, 즉 평균 입자 크기가 2㎛과 7㎛, 이렇게 2가지 실버 페이스트를 개발하였다. 이렇게 개 발된 실버 페이스트에 대해서 점도 및 점탄성, 경화후에 잔류용제 유무 확인을 위한 TGA측정, Strain에 따른 저항 변화 및 전극 표면 구조 변화에 대해서 검토하였다. 이러한 결과를 정리하면 Strain에 따른 저항 변화를 최소화하기 위해서는 실버 파우더의 입 자를 2㎛정도인 것이 가장 바람직함을 알 수 있었다.
        4,000원
        7.
        2022.10 구독 인증기관·개인회원 무료
        The massive amount of radioactive waste will generated during decommissioning of nuclear. Among the radioactive waste from these disposal process, 50-55 million tons of concrete waste are included. For safe disposal, it is very important to accurately analyze the concentration of radionuclides, especially 129I and 131I, contaminated concrete. 129I, a long-lived radioisotope of iodine (t1/2=1.57 × 107 y), and 131I (t1/2=8.04 d) are generated from the fission of uranium in nuclear reactors. In Korea, according to the Nuclear Safety and Security Commission (NSSC) radioactive clearance level guide, the limit for radioactive clearance level of 129I is less than 0.01 (Bq/g). Iodine can be absorbed, accumulate in organisms, and exhibit low energy emission compared with cesium, and cobalt. Therefore, it is essential to an accurately separate and analyze iodine radioactive waste. In this study, we focused on the determination of iodine in simulated cement waste form containing KI for the recovery of iodine. We performed cement waste form sieved through a different particle size (0.5 mm < ɸ < 6.35 mm). For the separation of iodine from solid samples with low iodine content, such as soil, sediment, and cement, for sample decomposition associated with solvent extraction using CHCl3 for separation of iodine from the matrix. The separation of iodine in cement waste particles was therefore carried out using an acid leaching method using KI containing cement particles. We observed that cement particle size decreased at 6.35 mm to 0.5 mm with iodine yield decrease at 0.840±0.011 to 0.582±0.010. Thus, in this study, the acid leaching method enables to determination Iodine in cement.
        8.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This research was conducted for dewatered sludge cake of industrial wastewater treatment, i.e., as the object of inorganic sludge discharged especially in iron & steel manufacturing shop which used Air drying system to reduce water content. That drying system's single-type cyclone separator was confirmed to have significantly lower separation efficiency on the conditions 20μm and below of particular size through computational fluid dynamics(CFD) analysis. However, we found out the primarily advanced value of separation efficiency on dual-type directly connected. Regarding separation efficiency on size of 10μm, the efficiency of a single-type was presented at 51.91%. On the other side, the efficiency of the dual-type was 97.88%. This advanced effect of the dual cyclone separator was checked at a demo facility of air drying equipment designed by 340m3/min of airflow on site.
        4,000원
        9.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study examined the effects of micro- (crystallinity) and macro (orientation)-crystalline properties of graphite on the initial efficiency, discharge capacity, and rate performance of anodic materials. Needle coke and regular coke were selected as raw materials and pulverized to 2–25 μm to determine the effects of crystalline properties on particle shape after pulverization. Needle coke with outstanding crystallinity had high initial efficiency, and smaller particles with larger specific surface areas saw increased irreversible capacity due to the formation of SEI layers. Because of cavities existing between crystals, the poorer the crystalline properties were, the greater the capacity of the lithium ions increased. As such, regular coke had a 30 mAh/g higher discharge capacity than that of needle coke. Rate performance was more affected by particle size than by crystalline structure, and was the highest at a particle distribution of 10–15 μm.
        4,000원
        10.
        2021.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Understanding of effects of changes in the particle size of the matrix material on the mullite whisker growth during the production of porous mullite is crucial for better design of new porous ceramics materials in different applications. Commercially, raw materials such as Al2O3/SiO2 and Al(OH)3/SiO2 are used as starting materials, while AlF3 is added to fabricate porous mullite through reaction sintering process. When Al2O3 is used as a starting material, a porous microstructure can be identified, but a more developed needle shaped microstructure is identified in the specimen using Al(OH)3, which has excellent reactivity. The specimen using Al2O3/SiO2 composite powder does not undergo mulliteization even at 1,400 oC, but the specimen using the Al(OH)3/SiO2 composite powder had already formed complete mullite whiskers from the particle size specimen milled for 3 h at 1,100 oC. As a result, the change in sintering temperature does not significantly affect formation of microstructures. As the particle size of the matrix materials, Al2O3 and Al(OH)3, decreases, the porosity tends to decrease. In the case of the Al(OH)3/SiO2 composite powder, the highest porosity obtained is 75% when the particle size passes through a milling time of 3 h. The smaller the particle size of Al(OH)3 is and the more the long/short ratio of the mullite whisker phase decreases, the higher the density becomes.
        4,000원
        11.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Bulk graphite is manufactured using graphite scrap as the filler and phenolic resin as the binder. Graphite scrap, which is the by-product of processing the final graphite product, is pulverized and sieved by particle size. The relationship between the density and porosity is analyzed by measuring the mechanical properties of bulk graphite. The filler materials are sieved into mean particle sizes of 10.62, 23.38, 54.09, 84.29, and 126.64 μm. The bulk graphite density using the filler powder with a particle size of 54.09 μm is 1.38 g/cm3, which is the highest value in this study. The compressive strength tends to increase as the bulk graphite density increases. The highest compressive strength of 43.14 MPa is achieved with the 54.09 μm powder. The highest flexural strength of 23.08 MPa is achieved using the 10.62 μm powder, having the smallest average particle size. The compressive strength is affected by the density of bulk graphite, and the flexural strength is affected by the filler particle size of bulk graphite.
        4,000원
        12.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        굴 패각을 입경(0 ~ 1, 1 ~ 2, 2 ~ 5 mm) 및 소성온도(400(P400), 500(P500), 600(P600), 800(P800)℃)별로 전처리 한 후, 퇴적물과 혼합 된 실내실험을 통해 퇴적물의 성상변화를 조사하였다. 굴 패각의 주요 성분인 CaCO3는 700℃ 이상의 소성 온도에서 열분해 되어 CaO로 변화하는 것으로 나타났다. P800의 Ca2+ 농도는 약 790 mg/L로 대조구 및 다른 실험구들에 비해 약 2 ~ 3배 높게 나타나 고온 소성 된 굴 패각일수록 용출되는 Ca2+는 높은 것으로 확인되었다. 600℃ 이상의 온도에서 소성된 굴 패각에서는 CaCO3의 열분해로 형성된 CaO의 가수분해를 통해 간극수 내의 pH가 0.1 ~ 0.5 증가한 것으로 나타났다. 간극수 내의 NH3-N은 대조구보다 약 2.2 ~ 7.6 mg/L의 범위로 증가하였으며, 이는 가수분해 과정에서 발생한 열, Ca2+에 의한 미생물 활동 억제, 소성 과정에서 증가한 굴 패각 공극을 통한 산소 공급 등이 복합적으로 작용한 결과로 판단된다. P600 및 P800의 직상수 및 간극수 내의 PO4-P 농도는 대조구보다 약 0.1 ~ 0.2 mg/L 낮게 나타났으며 이는 소성 굴 패각으로 인한 pH 증가 및 PO4-P와의 화학적 반응으로 판단된다. 이상의 결과를 통해 소성 온도에 따라 굴 패각은 퇴적물 내의 NH3-N 및 PO4-P의 농도변화에 영향을 미치는 것으로 확인되었으나, 입경에 의한 영향은 크지 않은 것으로 확인되었다. 본 연구의 결과는 향후 소성 굴 패각을 낮은 오염도의 연안 저서환경을 개선시키기 위한 기초자료로 활용 될 수 있을 것을 판단된다.
        4,000원
        13.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        노란잔산잠자리(멸종위기야생생물 II급) 약충은 내성천 일대 서식하는 것으로 알려져 있다. 2019년 3월 서식이 확인된 37개 지점의 하상 0.2㎡ 면적에서 채취한 퇴적물 입도 분석 및 개체수와의 상관관계를 분석하였다. 입도 분석 결과 ‘조립사’(500 ~ 1,000 ㎛) 52.5%, ‘극조립 사’(1,000 ~ 2,000 ㎛) 25.6%, ‘중립사’ (250 ~ 500 ㎛) 17.2%, ‘세립사’(125 ~ 250 ㎛) 3.1%, ‘극세립사’(63 ~ 125 ㎛) 1.0%, ‘실트’(63 ㎛미 만) 0.7% 순으로 나타났다. 노란잔산잠자리 약충의 개체수는 ‘극세립사’(63 ~ 125 ㎛), ‘세립사’(125 ~ 250 ㎛)와는 양의 상관관계를, ‘조립사’ (500 ~ 1.000 ㎛)와는 음의 상관관계를 나타내었다. 본 연구 결과를 통해 노란잔산잠자리 약충이 고운 모래를 서식처로 활용하고 있는 것을 확인 하였으며, 이러한 연구결과는 이후 내성천 일대 하상 환경변화 모니터링에 활용 할 수 있을 것이다.
        4,000원
        14.
        2020.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        As a case study on aspect ratio behavior, Kaolin, zeolite, TiO2, pozzolan and diatomaceous earth minerals are investigated using wet milling with 0.3 mm media. The grinding process using small media of 0.3 pai is suitable for current work processing applications. Primary particles with average particle size distribution D50, ~6 μm are shifted to submicron size, D50 ~0.6 μm after grinding. Grinding of particles is characterized by various size parameters such as sphericity as geometric shape, equivalent diameter, and average particle size distribution. Herein, we systematically provide an overview of factors affecting the primary particle size reduction. Energy consumption for grinding is determined using classical grinding laws, including Rittinger's and Kick's laws. Submicron size is obtained at maximum frictional shear stress. Alterations in properties of wettability, heat resistance, thermal conductivity, and adhesion increase with increasing particle surface area. In the comparison of the aspect ratio of the submicron powder, the air heat conductivity and the total heat release amount increase 68 % and 2 times, respectively.
        4,000원
        15.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Powder characteristics, such as density, size, shape, thermal properties, and surface area, are of significant importance in the powder bed fusion (PBF) process. The powder required is exclusive for an efficient PBF process. In this study, the particle size distribution suitable for the powder bed fusion process was derived by modeling the PBF product using simulation software (GeoDict). The modeling was carried out by layering sintered powder with a large particle size distribution, with 50 μm being the largest particle size. The results of the simulation showed that the porosity decreased when the mean particle size of the powder was reduced or the standard deviation increased. The particle size distribution of prepared titanium powder by the atomization process was also studied. This study is expected to offer direction for studies related to powder production for additive manufacturing.
        4,000원
        16.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Outdoor air pollution with particulate matter has become more severe in Korea. Ambient particle concentration affects the indoor environment through various routes through building envelopes. In this study, we investigated particle exposure in residential buildings. Indoor and outdoor particle sources determined the indoor concentrations and particle exposure. This paper measured indoor particles and CO2 concentrations in two different apartment buildings and conducted the survey for 24 hours. The I/O ratio of the occupant awake period was higher than the asleep period. The I/O ratio in the awake period is 0.93-3.65, while the I/O ratio in the asleep period is 0.31- 0.76.Indoor peak events such as cooking or cleaning temporarily increase the I/O ratio and emit the indoor particle sources. Decay rate constant is 0.49-6.84 (1/h) in the indoor peak events during the operation of the exhaust hood and natural ventilation. The size range of 0.3-0.5 μm size is over half for the proportions of emitted particles (55.6%). Daily exposure is divided into indoor sources (45.2%) and outdoor sources (54.8%). We found the differences for the proportion of particle exposure. The ratio of daily exposure in particles for 0.3-0.5 μm size is 43.1 (indoor)/ 56.9 (outdoor) %. However, indoor sources are higher than outdoor sources for the ratio of daily exposure in particles for the 0.5-10.0 μm size.
        4,000원
        17.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study demonstrates the effect of addition of Fe particles of different sizes on the critical properties of the superconductor MgB2. Bulk MgB2 is synthesized by ball milling Mg and B powders with Fe particles at 900oC. When Fe particles with size less than 10 μm are added in MgB2, they easily react with B and form the FeB phase, resulting in a reduction in the amount of the MgB2 phase and deterioration of the crystallinity. Accordingly, both the critical temperature and the critical current density are significantly reduced. On the other hand, when larger Fe particles are added, the Fe2B phase forms instead of FeB due to the lower reactivity of Fe toward B. Accordingly, negligible loss of B occurs, and the critical properties are found to be similar to those of the intact MgB2.
        4,000원
        18.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        강원지역은 우리나라의 다설지로서 복잡한 지형 때문에 강설량의 공간변동성이 크다. 특히 동풍조건에서 강설이 발생할 시 강설량의 공간적 변동을 예측하기 어렵다. 동풍조건에서는 강원지역 내 위치에 따라 대기환경조건이 다르며 이는 강설의 특성에도 영향을 줄 수 있다. 본 연구에서는 동풍 조건에서 태백산맥의 풍상측과 풍하측에서 강설의 미세 물리적 특성을 서로 비교 분석하였다. 강원지역 내 4개 관측지점을 선정하여 파시벨 수적계로 입자크기분포를 관측하였다. 얻어진 강설입자 크기 분포의 특성을 풍상측과 풍하측간 비교한 결과, 풍상측의 강설입자 크기 분포는 풍하측에 비해 넓은 분포를 가졌고 작은 강설입자의 수도 많았다. 강설입자의 수농도에 비례하는 보편특성수농도와 강설입자의 직경에 비례하는 보편특성직경 둘 다 풍상측에서 상대적으로 큰 값을 보였다. 또한, 얼음수함량과 강설강도 비교에서도 풍상측 지점에서 큰 평균값을 가졌다. 이 결과가 나타난 원인은 태백산맥 산사면에서 공기덩어리의 강제적 상승효과로 풍상측 지점 상공에 새로운 강설입자의 생성이 활발했기 때문으로 추정된다. 또한, 풍상측은 따뜻하고 습한 동풍이 불어오므로 이로 인해 지상기온이 0oC 근처에 머무르며 강한 부착과정이 일어나기 좋은 조건이다.
        4,500원
        19.
        2019.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The photovoltaic properties of TiO2 used for the electron transport layer in perovskite solar cells(PSCs) are compared according to the particle size. The PSCs are fabricated and prepared by employing 20 nm and 30 nm TiO2 as well as a 1:1 mixture of these particles. To analyze the microstructure and pores of each TiO2 layer, a field emission scanning electron microscope and the Brunauer–Emmett–Teller(BET) method are used. The absorbance and photovoltaic characteristic of the PSC device are examined over time using ultraviolet-visible-near-infrared spectroscopy and a solar simulator. The microstructural analysis shows that the TiO2 shape and layer thicknesses are all similar, and the BET analysis results demonstrate that the size of TiO2 and in surface pore size is very small. The results of the photovoltaic characterization show that the mean absorbance is similar, in a range of about 400-800 nm. However, the device employing 30 nm TiO2 demonstrates the highest energy conversion efficiency(ECE) of 15.07 %. Furthermore, it is determined that all the ECEs decrease over time for the devices employing the respective types of TiO2. Such differences in ECE based on particle size are due to differences in fill factor, which changes because of changes in interfacial resistance during electron movement owing to differences in the TiO2 particle size, which is explained by a one-dimensional model of the electron path through various TiO2 particles.
        4,000원
        1 2 3 4 5