Effect of phase transformation and grain-size variation of hot-pressed cobalt on its dry sliding wear was investigated. The sliding wear test was carried out against glass (83% SiO2) beads at 100N load using a pin-on-disk wear tester. Worn surfaces, cross sections, and wear debris were examined by an SEM. Phases of the specimen and wear debris were identified by an XRD. Thermal transformation of the cobalt from the hcp ε phase to the γ (fcc) phase during the wear was detected, which was deduced as the wear mechanism of the sintered cobalt.