To analyze the activity concentration of radionuclides in radioactive sludge samples generated from low- and intermediate-low-level radioactive waste from domestic nuclear power plant, a pretreatment process that dissolves and homogenizes the sample is essential. However, this pretreatment process requires the use of hydrofluoric acid, which makes analysis difficult and challenges users to handle harmful chemicals. Therefore, we aim to minimize the use of hydrofluoric acid by measuring gamma nuclides in the sludge sample without pretreatment process and compare the differences of measurement results according to the sample matrix with and without pretreatment process. We will collect about 0.1 g of the sludge sample, and dissolve it using an acid treatment process after using microwave decomposition. We will then use gamma spectroscopy to check the concentration of nuclides present in the sludge before and after dissolution and consider the effect of the sample matrix.
Many radionuclides emit two or more gamma rays in a cascade once they decay. At this time, gamma rays are detected at the same time, and the signals are overlapped and measured as one added signal. This is called the summing coincidence effect, and it causes an error of more than 10% depending on the detection efficiency, measurement conditions, and target nuclide. It is known to be greater as the efficiency of the detector increases and as the distance between the source and the detector decreases. It is necessary to consider the summing coincidence effect since the efficiency of the HPGe detector owned by the KHNP CRI is as high as 65%. In this study, We would like to propose an appropriate gamma nuclide analysis method for radioactive waste generated from NPP by evaluating the influence on the summing coincidence effect.
When self-disposing of radioactive waste, it is important to follow the acceptable concentration standards for each nuclide set by the Nuclear Safety and Security Commission (NSSC). Gamma-emitting nuclides can be easily analyzed with a simple pretreatment process, but beta-emitting nuclides require a chemical separation procedure to be analyzed for radiochemistry analysis. When analyzing betaemitting nuclides for the purpose of self-disposal, there may be difficulties in radiation detection after the chemical separation process. This is because the concentration of beta nuclides in the sample may be low and some of them may be lost during the chemical separation. Therefore, measurement method of gross-beta activity can be used instead of that of each nuclide to access the compliance of selfdisposal criteria. While a proportional counter is commonly used to measure gross-beta activity, liquid scintillation counting can also be used to measure gross-beta, and we plan to compare the results of both methods.
For the final disposal of radioactive waste, concentration of gamma nuclides such as Co-58, Co-60, Cs-137, Nb-94 have to be determined to meet nuclear regulatory requirements. In general, gamma nuclide analysis can be performed with simple sample pretreatment without complicated chemical separation processes due to the characteristics of the nuclide and high resolution of the measuring equipment. However, when the concentration of Co-60 is high in a specific radioactive waste generated at the NPP, the background is increased by the compton continuum of Co-60. That makes it difficult to evaluate accurately Nb-94, which is in the lower energy band than the gamma ray energy region of Co-60 and especially Cs-137, which is used as a key nuclide of scaling factor. In this study, We consider the problem of MDA dissatisfaction or overestimation due to the increased background by Co-60.
This study was performed to evaluate the separation of Sr, Cs, Ba, La, Ce, and Nd using gas pressurized extraction chromatography (GPEC) with anion exchange resin for the quantitation of Neodymium. GPEC is a micro-scaled column chromatography system that provides a constant flow rate by utilizing nitrogen gas. It is overcome the disadvantages of conventional column chromatography by reducing the volume of elution solvent and shortening the analysis time. Here, we compared the conventional column chromatography and the GPEC method. The whole analysis time was decreased by nine times and radioactive wastes were reduced by five times using the GPEC system. Anion exchange resin 1-X4 (200~400 mesh size) was used. The sample was prepared at a 0.8 M nitric acid in methanol solution. The elution solvent was used at a 0.01 M nitric acid in methanol solution. Finally the eluate was analyzed by ICP-MS to determine the identification and recovery. In this case, we applied the natural isotopes of LREEs (139La, 140Ce, and 144Nd) and high activity nuclides (88Sr, 133Cs, and 138Ba) instead of radioactive isotopes for the preliminary test; as a result, unnecessary radioactive waste was not produced. The recoveries were 93.9%, 105.9%, 91.9%, 47.6%, 35.9%, and 79.9% of Sr, Cs, Ba, La, Ce, and Nd, respectively. The reproducibility of recoveries by GPEC were in the range 2.8%–10.9%.
To analyze the radioactivity of 3H and 14C in miscellaneous radioactive wastes generated from nuclear power plants, a wet digestion method using sulfuric acid is currently used. However, sulfuric acid is classified as a special management material, and there is no disposal method for contaminated radioactive waste. Therefore, research on a thermal decomposition method that can analyze the DAW radioactive waste samples without using sulfuric acid is necessary. In this study, we will cover the final sample amount, sample injection method, and prevention of organic ignition to meet the minimum detection limit requirements of the analysis equipment. Through this research, optimal conditions for the thermal decomposition method for analyzing the radioactivity of 3H and 14C in DAW radioactive wastes generated from nuclear power plants can be derived.
The Korea Atomic Energy Research Institute (KAERI) employs a methodology for evaluating the concentration of radionuclides, dividing them into volatile and non-volatile nuclides based on their characteristics, to ensure the permanent disposal of internally generated radioactive waste. Gamma spectroscopy enables the detection and radiation concentration determination of individual nuclides in samples containing multiple gamma-emitting nuclides. Due to the stochastic nature of radioactive decay, the generated radiation signal can interact with the detector faster than the detected signal processing time, causing dead time in the gamma spectroscopy process. Radioactive waste samples typically exhibit higher radiation levels than environmental samples, leading to long dead times during the measurement process, consequently reducing the accuracy of the analysis. Therefore, dead time must be considered when analyzing radioactive waste samples. During the measurement process, dead time may vary between a few seconds to several tens of thousands of seconds. More long dead time may also result in a temporal loss in the analysis stage, requiring more time than the actual measurement time. Long dead time samples undergo re-measurement after dilution to facilitate the analysis. As the prepared solution is also utilized in the nuclide separation processes, minimizing sample loss during dilution is crucial. Hence, predicting the possibility of dead time exceeding the target sample in advance and determining the corresponding dilution factor can prevent delays in the analysis process and the loss of samples due to dilution. In this study, to improve the issues related to gamma analysis, by using data generated during the analysis process, investigated methods to predict long dead time samples in advance and determining criteria for dilution factors. As a result of comparing the dead time data of 5% or long with the dose of the solution sample, it was concluded that analysis should be performed after dilution when it is about 0.4 μSv/h or high. However, some samples required dilution even at doses below 0.4 μSv/h. Also, re-measurement after dilution, the sample with a dead time of less than 32% was measured with less than 5% when diluted 10 times, and more than 32% required more than 10 times dilution. We suppose that with additional data collection for analyzing these samples in the future, if we can establish clearer criteria, we can predict long dead time samples in advance and solve the problem of analysis delay and sample loss.
LiCl-KCl eutectic possesses unique properties such as a low melting point, high thermal conductivity, and good electrical conductivity. These properties make it suitable for various applications, including nuclear power generation, pyroprocessing in nuclear waste management, and thermal energy storage systems. In most experiments using LiCl-KCl, the molten salt composition is an important factor; therefore, periodic analysis through sampling is necessary for monitoring compositional changes. Although manual sampling is typically used, it is time-consuming and can introduce errors due to low reproducibility. To address this issue, we have developed an automatic molten salt sampling device using the cold-finger method. This method involves immersing the tip of a tungsten rod in hightemperature LiCl-KCl, removing it after a few seconds, and allowing the adhered molten salt to solidify instantly. A collector then scratches and drops the solidified sample. These processes are carried out automatically using servo motors, enabling the sampling device to move around the molten salt system. We have optimized the sampling conditions, such as insertion and withdrawal rate, immersion time, and the interval between continuous sampling, based on the molten salt temperature. The temperature was set between 500°C and 850°C, considering the operating temperatures of the applications. In addition to sampling speed, the sampling depth is a key condition for determining the sampling mass. Therefore, we examined the amount of sample depending on the sampling depth and, particularly, considered the change in salt height when sampling is performed continuously. As a result, we determined the number of sampling iterations required to reach the target sample mass. Furthermore, to minimize the initial salt loss, we noted that sampling from the salt surface resulted in less representative samples. To determine the reliability, we compared the results of surface sampling with those obtained when sampling at the middle of the salt. This study will enable highly reproducible and reliable sampling by providing a prototype for an automatic sampling device for molten salt along with guidelines.
Corrosion-related challenges remain a significant research topic in developing next-generation Molten Salt Reactors (MSRs). To gain a deeper understanding of preventing corrosion in MSRs, previous studies have attempted to improve the corrosion resistance of structural alloys by coating surfaces such as alumina coating. To conduct a corrosion test of coating alloys fully immersed in molten salt, it’s important to ensure that the coating application process is carefully carried out. Ideally, coating all sides of the alloy is necessary to avoid gaps like corners of the alloy, while only applying a one-sided coating alloy can lead to galvanic corrosion with the base metals. Using the droplet shape of eutectic salt applied to only one side of the coating alloy would avoid these problems in conventional corrosion immersion tests, as corrosion would occur solely on the coating surface. Although the droplet method for corrosion tests cannot fully replicate corrosion in the MSRs environment, it offers a valuable tool for comparing and evaluating the corrosion resistance of different coating surfaces of alloys. However, the surface area is important due to the effect of diffusion in the corrosion of alloy in molten salt environments, but it is difficult to unify in the case of droplet tests. Therefore, understanding the droplet-alloy properties and corrosion mechanism is needed to accurately predict and analyze these test systems’ behavior highlighting unity for corrosion tests of different coating surfaces of alloys. To analyze the molten salt droplet behavior on various samples, pelletized eutectic NaCl-MgCl2 was prepared as salt and W-, Mo-coating, and base SS316 as samples. At room temperature, the same mass of pelletized eutectic NaCl-MgCl2 was placed on different samples under an argon atmosphere and heated to a eutectic point of 500°C in a furnace. After every hour, the molten droplets were hardened by rapid cooling at room temperature outside the furnace. The mass loss of salts and the contact area of the samples were measured by mass balance and SEM. The shape, surface area to volume ratio, and evaporation of the droplets of NaCl-MgCl2 per each coating sample and hour were analyzed to identify the optimal mass to equalize the contact coating surface of alloys with salts. Furthermore, We also analyzed whether their results reached saturation of corrosion products through ICP-MS. This will be significant research for the uniformity of the liquid-drop shape corrosion test of the coating sample in molten eutectic salts.
Given the limited terrestrial reserves of uranium (approximately 4.6 million tons), exploring alternative resources is necessary to secure a sustainable, long-term supply of nuclear energy. Uranium extraction from seawater (UES) is a potential solution since the amount of uranium dissolved in seawater (approximately 4.5 billion tons) is about 1,000 times that of terrestrial reserves. However, due to the ultra-low concentration of uranium in seawater (approximately 3.3 ppb), making UES economically viable is a challenging task. In this paper, we explore the potential of using thermal discharge from domestic nuclear power plants for uranium extraction. The motivation for this comes from previous research showing that the adsorption capacity of amidoxime-based adsorbents is proportional to the temperature of the seawater in which they are deployed. Specifically, a study conducted in Japan found that a 10°C increase in seawater temperature resulted in a 1.5-fold increase in adsorption capacity.
Crystallographic properties of Ni-based alloys such as alloys 600, 617, and Hastelloy N, which are a candidate to be used as structural materials in Molten Salt Reactor (MSR), were studied in the temperature range of 25-1,000°C using high-temperature X-ray diffraction (HT-XRD) under an Ar atmosphere. We found that face-centered cubic Ni crystal structure at room temperature was started to be changed over 600°C in all Ni-based samples. However, the appearance of changing diffraction patterns over 600°C was different for all samples. In addition, we observed the increase in the lattice constant along the a-axis upon heating in all specimens, determined by Pawley refinement of HTXRD data.
Some consumer goods containing radioactive substances are in circulation and used in everyday life. In accordance with the Nuclear Safety Act, consumer goods with radioactivity are regulated. However, since most consumer goods distributed in Korea have no information that can confirm the amount of radiation, it is necessary to analyze the radiation for safety regulation. Among these consumer goods, GTLS (Gaseous Tritium Light Source) contains gaseous tritium (tritium, written as 3H or T), which is a radioactive material. The gaseous composition ratio in GTLS was analyzed using a precision gas mass spectrometer (Thermo Fisher, model MAT 271). As a result of GTLS analysis, the H2, HD or H3 +(T) or 3He, HT or D2 or He, DT, and T2, which correspond to the mass-to-charge ratio (m/z) 2 to 6 and the air components were detected. In addition, substances corresponding to m/z=24 and m/z=21 were also detected. These were compared with pure CH4 and those fragmentation patterns. The ratios of CT4 (m/z = 24) to CT3 (m/z = 21) and CH4 (m/z = 16) to CH3 (m/z = 15) were compared and they agree within the measurement uncertainty. We also performed additional experiments to separate the water component in the GTLS samples, considering the possibility that the m/z = 21 to m/z = 24 region is tritium compounds based on H2O. Despite the removal of the water components, peaks were detected at m/z=21 and m/z=24. Therefore, we confirmed that the component of m/z = 24 in the GTLS sample was CT4.