본 연구에서는 역삼투(RO)와 축전식 탈염(CDI)을 이용하여 수돗물로부터 초순 수의 제조 가능성을 살펴보았다. 수돗물의 pH를 조정하여 RO 모듈에 통과시킨 후 RO 처리수를 곧바로 CDI 단위 셀에 공급하여 처리수의 비저항을 측정하였 다. 수돗물의 pH를 4.5-10.0 범위로 조절한 후 RO 모듈에 공급한 결과 pH 8.9 에서 94.6%의 염 제거율을 나타냈다. 또한 pH가 7.2, 8.5, 9.0인 유입수를 RO-MCDI 시스템에서 탈염한 결과 처리수는 각각 0.73, 3.2, 10.0 MΩ⋅cm의 비저항을 나타냈다. 도출된 운전조건을 바탕으로 RO-MCDI 시스템의 장기운전 에 따른 안정성을 검토하였다. 흡착과 탈착과정을 30회 반복하는 동안 안정적으로 10 MΩ⋅cm의 초순수를 제조할 수 있었다.
탄소전극과 이온교환막을 결합한 막결합 축전식 탈염(MCDI) 셀을 이용하여 환원전위가 다른 Na+과 Cu2+ 이온 혼합용액에서 Cu2+ 이온의 제거 특성을 연구 하였다. MCDI 셀에 일정한 전류밀도(1.5 mA/cm2)를 공급하면서 탈염을 실시한 결과 Cu2+ 이온은 일정한 제거속도를 유지하였지만 Na+ 이온의 제거량은 시간에 따라 감소하였다. 이는 Cu2+ 이온은 전착반응에 의해, Na+ 이온은 전기흡착 반응에 의해 제거되기 때문인 것으로 판단된다. Cu2+ 이온의 당량비가 0.14, 0.38, 0.50인 혼합용액을 탈염한 결과 제거된 이온 중 Cu2+ 이온의 당량비는 각 각 0.27, 0.60, 0.79로 나타났다. 이를 통해 Cu2+ 이온의 전착반응에 의해 혼합용 액에서 Cu2+ 이온의 제거율을 증가시킬 수 있음을 알 수 있었다.
탄소전극과 이온교환막을 결합한 축전식 탈염(CDI)을 이용하여 셀 구조와 셀 전위에 따른 구리 이온의 제거 특성을 연구하였다. 탄소전극과 이온교환막의 결 합 방식에 따라 4종류의 셀에 대해 실험한 결과 양이온, 음이온교환막을 결합한 셀(MCDI)에서 구리 이온의 제거율과 전하효율이 가장 높은 것으로 나타났다. 셀 전위에 따른 영향을 분석한 결과 0.6 V 이하에서는 전기이중층에 의한 전기 흡착(electrosoprtion)에 의해, 그리고 0.6 V 이상에서는 구리 이온의 전착 (electrodepostion)반응에 의해 구리 이온이 제거됨을 확인하였다. 또한 1.2 V 이상에서는 물이 전기분해되어 전하효율이 감소하였다. MCDI 셀의 운전결과 전하효율은 80% 정도로 구리 이온을 포함한 중금속 이온을 제거하는데 효과적인 것으로 판단되었다.
일반적인 MBR공법의 경우 허용한계 이상의 고농도 MLSS에서 운영되면 막오염이 급격히 발생된다. 이는 슬러지 케익 축적이 원인이며 이로 인해 분리막 회복을 위한 빈번한 세정이 적용되어야 하고 그 결과 운영비 증가 및 분리막 수 명이 단축된다. 본 연구에서는 (주)에코니티의 자유말단형(End-Free) 분리막을 이용한 MBR 시스템 운전을 진행하였다. 분리막 모듈의 구조적인 특성으로 슬러지가 쉽게 탈리되어 케익의 축적이 발생하지 않아 고농도 MLSS에서도 적용가능함을 확인 하였다. 이에 따라 운전 플럭스를 상향시킬 수 있었고 장기 운전을 통하여 막여과 시스템의 안정운영을 평가하였다.
본 연구에서는 수용성 고분자인 Polyvinylalcohol (PVA)를 이용하여 4급암모늄기를 도입한 음이온교환고분자와 술폰기가 도입된 양이온교환고분자를 합성하였다. 합성한 이온교환고분자는 FT-IR, 함수율, 이온교환용량 등의 특성평가를 실시하였으며, 탄소전극에 캐스팅법으로 이온교환고분자 용액을 코팅하여 전극을 제조하였다. 제조한 탄소전극은 정육각형 형태의 유로를 가지는 셀을 이용하여 염 제거 효율을 비교하였다. 탈염 실험은 유속 15, 25, 35 ml/min에서 진행 하였으며 흡⋅탈착 시간 및 전압을 변화시켜가며 실시하였다. 또한 공급액의 농 도 및 종류를 달리하여 실험하였다.
본 연구는 잉여슬러지와 차아염소산나트륨을 혼합하여 제조한 차아염소산나트륨 처리 슬러지를 침지형 분리막이 설치된 생물반응조에 주입하여 수처리 미생물에 기질을 공급하고 수처리에 적합한 pH와 알칼리도를 유지함으로써 응집제 주입 없이 방류수의 총질소 농도 20 mg/L, 총인 농도 0.2 mg/L 이하로 처리할 수 있는 MBR 하수처리공정을 개발하였다. 개발된 공정은 별도의 응집제 주입 없이 질소와 인의 법적 방류수 수질기준 을 만족하였고, 향후 하수처리장 약품비용 절감에도 기여할 것으로 기대된다.
하수처리장 반송슬러지를 채취한여 안정시킨 후 같은 평막 모듈 2개를 침지 시키고 각각의 막에 기존 MBR 공정인 FR (Filtration/Relaxation) 운전방식 및 연속운전을 적용시켜 막에 손상이 가지않을 정도의 압력에 도달할 때까지 운전 하였다. 이후 여러 가지 물리적 세척방법을 적용하여 막을 세척하는 실험을 반복하여 각 세척법에 대한 가역오염 기울기를 측정하였다. 또한 막에 대한 임계 투과유속을 측정하여 실험에 어떠한 영향을 끼치는지 확인하였다. 실험에 사용한 막은 P사의 평막이며 공칭세공크기 0.4 μm이며 막 면적은 약 0.02 m2이다.
본 연구에서는 불균질 양/음이온교환막을 제조하기 위하여 Polyvinylidene Fluoride (PVDF)와 상용 양이온수지(Purolite사의 C100MR/5035) 와 음이온수지 (Purolite사의 A430MR/100) 를 사용하여 불균질 양/음 이온교환 용액을 제조하였다. 제조한 용액은 캐스팅법으로 제막하여 특성을 평가하였다. 지지체인 PVDF의 양에 대한 양/음이온교환수지의 함량을 달리하여 불균질 이온교환막을 제조하였다. 제조한 이온교환막의 특성을 알아보기 위하여 FT-IR, 이온교환용량, 함수율, 인장강도 등을 측정하였다.
역삼투 해수담수화 공정에서 막 오염은 생산수량 감소 및 공정의 에너지 소비량 증가를 야기한다. 막간 차압 증가, 생산수량 감소 외에 막 저항 값의 증가는 막 오염 정도를 판단하는 수치로 사용이 가능하다. 특히 막 저항 값 기반의 세정은 막 오염 제어를 통해 역삼투 해수담수화 공정에서 막의 성능 유지 시 사용 가능하다. 이에 본 연구에서는 해수 수질 인자 및 공정 운전 인자에 기반하여 막 저항 값을 예측하는 알고리즘을 제안한다. 알고리즘은 해수담수화 플랜트의 운전 데이터에 기반하여 인자들과 막 저항 값 사이의 관계를 학습하고 검증과정을 거쳐 막 오염 발생 시점을 사전에 예측하는 방식으로 개발되었다. 예측 정확도를 분석하고 개발된 알고리즘의 수정을 통해 예측 정확도 향상을 위한 연구를 진행하였다.
수온 상승에 따른 조류 등 이취미 물질의 증가, 미량 유해물질의 검출로 인해 기존 여과 공정으로 시민들의 수질 기대조건을 충족할 수 없기 때문에 오존+활 성탄 등의 고도정수처리 공정의 도입이 활성화되었으며, 이미 대도시, 광역단위 에는 고도정수처리 공정 도입이 완료된 상황이다. 대부분의 국내 정수장의 여과 공정은 급속 모래여과 공정으로 구성되어 있으며, 10년간 막여과 공정이 등장하여 여과 공정에 따른 후단 오존+활성탄 공정에 미치는 영향을 파악하는 것이 필요하다고 판단되었다. 서울시 Y 정수장에 설치된 고도정수처리 파일럿 플랜트 를 활용하여 고도정수처리 공정에 모래여과수와 막여과수가 유입되었을 경우 수질 및 제거율의 변화와 활성탄 표면 변화를 관찰하였고 이를 통해 막여과 정수처리 공정 도입 필요성을 검토하였다.
전기 탈이온 공정(EDI)은 전기투석법과 이온교환수지법을 혼합한 공정으로 알려져 있고, 모듈은 전기투석을 위한 양이온교환막과 음이온교환막 사이에 이온 교환수지를 채워 넣는 형태로 제조된다. 모듈 제조에 사용되는 양이온교환막을 고무상의 고분자 SEBS triblock copolymer를 이용하여 sulfonation을 진행하여 S-SEBS 양이온교환막을 제조하였다. 제조된 양이온교환막의 특성평가를 진행하였고, 술폰화시킨 SEBS, 물 분자, 히드로늄 이온을 모델링하여 술폰화시킨 SEBS, 히드로늄 이온과 물분자의 의 동역학을 분자동역학시뮬레이션을 이용해서 살펴 본 뒤 비교분석을 진행했다.
이번 연구에서는 기존의 이온교환 수지를 대체 할 수 있는 물질에 대한 연구를 진행하였다. 이에 대한 물질로는 유화중합을 통해 Styrene monomer를 활용한 Polystyrene particle을 제조하였다. 이온기가 도입된 입자의 경우 기존의 이온교환수지보다 표면적이 훨씬 크고, 입자 크기가 작아 좁은 분포를 나타내어 더 높은 이온 교환 용량을 나타냄을 확인 하였다. 단분산된 입자에 Sulfonation 반응을 통해 -SO3 -관능기를 도입하였으며 이외에도 -COO-, -PO3 -, -C6H4O- 등의 관능기를 도입함으로써 SEBS 고분자 분리막을 음전하로 높게 하전 시킬 수 있 었다. 입자를 제조하고 이에 따른 특성평가는 SEM, FT-IR, Zeta potential, IEC value등의 전기적 특성과 TGA, DSC 등의 열적 특성을 파악하였다.
본 연구에서는 분리, 흡착에 관한 물리적인 수처리 공정이 매우 중요해짐에 따라 이번 연구에서 Track-etched polycarbonate membrane이 친수성의 성질을 가지며 균일한 기공크기를 가지고 기계적 강도가 우수한 점을 활용하여 제조를 진행하였다. 이 분리막에는 표며이 하전 된 균일한 크기의 나노입자를 포함시킨 후 제거 능력에 대한 분리 특성평가를 진행하였다. 유화중합을 통해 얻어진 Polystyrene particle을 Cation/Anion으로 각각 하전시켰고 이 Latex입자들의 특성을 파악하기 위해 SEM, DSC, FT-IR 및 Zeta를 측정 진행하였다. 동시에 PC membrane이 갖는 표면 전하 및 기공크기와 입자의 표면이 갖는 전하 및 입자 크기에 따른 수투과도에 대한 조사를 진행하였다.
본 연구에서는 고순도의 모데나이트 입자를 합성하기 위하여 천연 제올라이트를 시드로 사용하여 시드 농도 및 수열합성 시간에 따라 시드가 미치는 영향 을 고찰하였다. 시드를 3 g/100g batch 주입하여 140°C에서 72시간 동안 수열 합성 하였을 때 1-2 μm 사이즈의 고순도 모데나이트 입자를 안정적으로 합성할 수 있었다. 이를 통해 천연 제올라이트 시드는 모데나이트 입자의 성장에서 구형 모데나이트 전구체 형성 자리를 공급하고 모데나이트 원료 물질 소스 역 할을 한다는 것을 알 수 있었다. 이러한 결과들을 바탕으로 용도에 맞는 고순도 의 모데나이트 입자를 합성할 수 있음을 확인하였고 천연제올라이트를 사용함으로써 낮은 가격으로 우수한 성능을 갖는 소재개발에 활용할 수 있을 것이라 판단된다.
바이오 메탄을 생산하기 위해 물리흡수제 특성평가 및 CO2/CH4 흡수 연구를 진행하였다. 상용 물리흡수제 중 프로필렌카보네이트(PC)는 PP 중공사막과 가장 높은 58.3° 접촉각을 보였고, 5 wt% PC를 물과 혼합할 경우 90° 이상의 접촉각 이 관찰되었다. PC/물 혼합 흡수제는 약 0.150 mmol/g의 흡수량으로 물 흡수제에 비해 높은 CO2 흡수능을 같는 것으로 보이며, 막접촉기에 가장 적합한 물 리흡수제로 선정되었다. PC/물 혼합 흡수제를 막접촉기을 통해 측정된 CO2 제 거율 약 98.0%, CH4 순도는 약 98.4%으로 바이오 메탄 정제를 위한 흡수제로 높은 가능성을 보여주었다. 그러나 물보다 우수한 PC의 CO2 흡수능에 맞추어 막접촉기 탈기 막 모듈 및 시스템 개선이 필요하다.
본 연구에서는 높은 산성 조건에서 상용화 된 서로 다른 3가지 나노여과 분리막 NE40, 70, 90을 선정하여, 표면 및 투과 특성 변화를 고찰하고자 한다. 산에 노출 전/후 표면 특성을 확인 하는 방법으로 푸리에 변환 적외선 분광기 (FT-IR) 및 광전자분광기 (XPS)를 이용하였으며, 이러한 표면 특성이 투과 특성에 미치는 영향을 알아보기 위하여 염제거율을 측정하였다. 위와 같은 표면 및 투과 특성 평가를 바탕으로 높은 산성 조건에서 Piperazine amide 분리막(NE40, 70)에 비해 Polyamide 분리막(NE90)이 상대적으로 높은 내산성을 가짐을 확인하였다.
본 연구에서는 막 결합형 축전식탈염공정(Membrane capacitive deionization) 을 사용하여 용액 내에 염을 제거하고자 하였다. 기존에 가장 많이 사용되는 사각형 형태의 유로를 가진 CDI 셀 보다 좋은 탈염성능을 위해 유로의 형태와 크기를 달리하여 실험을 진행하였다. 먼저 CFD분석을 통해 유동패턴을 조사하여 각각의 조건에 따른 데드존을 찾아내는 실험을 진행하였고 육각형 형태의 모양으로 새로운 셀을 디자인하여 실험하였다. 실험조건을 흡착전압, 흡착시간, 탈착 전압, 농도, 유속을 달리하여 탈염효율을 비교하였다.
본 연구에서는 탄소전극에 SPEEK (sulfonated poly ether ether ketone) 양이 온교환막과 APSf (Aminated Polysulfone) 음이온교환막을 코팅하여 CsNO₃ 과 Sr(NO₃)₂의 오염수의 방사성 이온 제거 성능비교 연구를 하였다. 실험은 유속 15,25,35 ml/min에서 진행하였으며 흡탈착 시간 및 전압과 공급수의 농도를 달리하여 실험을 진행하였다. 전압을 0.5~1.5V로 변화시키면서 실험한 결과 1.5V에서 CsNO₃은 98.5%, Sr(NO₃)₂94%의 제거효율을 나타내었다. 결과적으로 1가원소인 Cs이 2가원소인 Sr보다 높은 제거율을 나타냄을 알 수 있었다.
The PBI membrane doped with phosphoric acid (PA) is one of the promising candidates for HT-PEMFC. The proton conductivity of PA doped PBI depends on the acid doping level (ADL). The method to fabricate porous PBI membrane using porogen were reported to increase the ADL. However, high ADL cause complete loss of the mechanical strength of the membranes. In this research, the dead-end porous PBI membranes were prepared using progen to increase the mechanical strength than porous PBI membrane and proton conductivity. The dead-end porous PBI membranes were investigated in terms of ionic conductivity, ADL, SEM and mechanical strength.
폴리벤즈이미다졸(PBI)은 우수한 내열성, 내화학성으로 잘 알려진 슈퍼 엔지니어링 플라스틱이다. 이러한 최상위 급의 물성을 지녔음에도 불구하고 PBI는 가 공성이 매우 떨어지기 때문에 다양한 분야의 적용에 한계를 지닌다. 기존 압축 성형을 이용한 PBI 성형물은 무게가 가벼우면서 우수한 강도 및 내열성을 나타내어 가혹한 환경을 가지는 산업분야에서 주로 사용되어 왔으나, 기체에 의한 open, closed pore의 조절, 싱크마크, 스프링백 등과 같은 압축성형 공정 자체 의 문제점 때문에 양질의 결과물을 얻기 힘들다. 본 연구에서는 이러한 문제를 해결하기 위하여 개선 된 고온 압축성형방법을 이용하여 PBI 압축성형물을 제 조하였고 고성능의 압출성형물 이상의 물성을 지니기 위하여 개질 된 카본나노 튜브와 그래핀 옥사이드를 도입하여서 기계적 강도를 높이고자 하였다. 각각의 보강제들은 초음파균질기를 통하여 고분자 용액에 골고루 분산되었고, 인장강도와 굽힘강도를 측정하기 위해 각각 ASTM규격에 맞는 압축성형 시편을 제작하였으며 UTM장비를 통해 강도 및 모듈러스를 측정하고 비교하였다.