The effect of heat treatment and vacuum conditions on the textural properties and electrochemical performance of commercially available activated carbons (ACs) was investigated. The AC after post-heat treatment was characterized by nitrogen adsorption–desorption, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy measurements. The ACs treated under vacuum conditions exhibit a higher specific surface area and micropore surface area than those treated under nitrogen atmospheric pressure without significantly affecting the graphite structure of the AC. Under 800 °C temperature and vacuum conditions (AC-V800), the AC with the highest Brunauer– Emmett–Teller surface area of 1951.9 m2 g−1 (16.4% improvement relative to that of the original AC (1677.2 m2 g−1)) was obtained. This is attributed to the removal of oxygen-containing functional groups and volatile matters in the carbon by thermal treatment under vacuum conditions. Consequently, the electric double-layer capacitor using ACs treated under vacuum conditions (1 kPa) at 800 °C (AC-V800) shows considerably improved electrochemical performance in terms of higher specific capacitance and better cycling stability at a high working voltage (3.1 V), compared to the nitrogen-treated and commercial ACs.
전세계적으로 컨테이너선은 대형화되고 있으며, 2005년 9,200 TEU에 불과하였던 컨테이너선의 크기가 최근에는 24,000 TEU 급으로 확대되었다. 컨테이너선의 대형화와 함께 우리나라에서도 대형 컨테이너선들의 입·출항이 잦아지고 있어 안전 통항에 대한 검토의 필요성이 강조되고 있다. 이에 본 연구에서는 24,000 TEU 컨테이너선을 대상 선박으로 우리나라의 항만 및 어항 설계 기준에 따라 부산신항 및 부산신항 입항을 위해 통과해야 하는 가덕수로에서의 UKC를 산출하였다. 또한 UKC 기준을 충족하면서 항해 가능한 최대속력을 다양한 squat 식을 활용하여 구하였고, 이 결과를 현재의 속력제한 기준과 비교하였다. 연구결과 부산신항에는 흘수대비 10 % 여유수심을 요구하며 이를 만족하는 squat값은 0.95 m였으며, 가능한 최대속력은 11 kts였다. 가덕수로에서는 흘수대비 15 % 여유 수심을 요구하며 이를 만족하는 squat값은 1.78 m였으며, 가능한 최대속력은 15 kts였다. 부산신항에서는 계산결과인 11 kts보다 제한속력이 12 kts로 높게 설정되어 있어 안전측면에서 재고려가 필요하며, 가덕수로에서는 계산결과인 15 kts보다 제한속력이 12 kts로 낮게 설 정되어 있으므로 원활한 통항을 위하여 필요시 속력제한 규정을 높이는 것을 고려해 볼 수 있다. 본 연구는 제한된 요소만을 고려하여 UKC 및 항해 가능한 속력을 산출한 한계를 가지고 있으나 이 연구를 토대로 추가연구가 진행된다면 정확한 UKC 및 안전속력을 제한할 수 있을 것으로 판단된다.
The aim of this study was first to expand participation types in the field of beauty design by examining activities in the field, and second, to seek practical methods for addressing the important issue of social responsibility amid the current pandemic situation. Accordingly, social responsibility in design was examined through a review of previous studies. The features of practice domains and design performance fields were examined comparatively. As a result, it was found that social practices take place in various sectors, with sensibility toward the environment being escalated to a new level in the cosmetics industry. In terms of cosmetics enterprise practices, collecting, recycling, manufacturing, and retail networking has been established to reuse up to 95% of waste resources. Furthermore, ethical responsibility and participation concerning product and service waste resources are recommended, resulting in the supply of eco-friendly products in a virtuous cycle. In terms of systematic policy, even component transformation (such as organic certification and excluding toxic substances) is being carried out. However, it was difficult to identify such responsible activities in Korea; thus, systematic practice is needed. Designers take part in talent donation activities, and it was the sector they prefer the most. However, it is necessary to conduct studies on limitations such as venues equipped with cosmetics procedure equipment and public cosmetics sanitation and make systematic improvement, such that activities can be led with initiative from passive participation.
The purpose of this study is to first examine the relationship between appearanceenhancing beauty practices and feminism, and secondly, to analyze public images of contemporary women using this paradigm. Through the lens of this relationship, we present a literature review and empirical research focusing on the evolution of public image trends among girl groups, with special attention to the Refund Sisters, a South Korean supergroup currently drawing mainstream attention as female icons. The scope of analysis includes girl groups dating from the 1990’s to the year 2020 and photos of the Refund Sisters. Our results indicate that firstly, free sexual expression is evident based on active use of sexuality; images contain bold demonstrations of females desire, expressions previously considered taboo. Secondly, we note deviations from more standardized female images, unique adornment of outward appearance, and rejection of normative female images through freer forms of self-presentation. Lastly, there is greater cultural and racial diversity, rejection of modern race and gender binaries, and increased representation of queer identities. However, the relationship between appearance-enhancing beauty practices and feminism is sometimes considered paradoxical, with some arguing that beautifying one’s outward appearance is a compulsory strategy and that it should be rejected in order to resist aesthetic pressure.
Three-dimensional (3D) organoids act as model systems because they mimic in vivo tissue morphology. Recent advancements in the field have demonstrated that organoids derived from various organs have assisted in understanding the underlying mechanisms of disease modeling and expanded our knowledge of organ development in vitro. Furthermore, these organoids have become a promising biomaterial in regenerative medicine for therapeutic purposes as well as in nutritional research for feed efficiency measurement in livestock. Intestinal organoids of livestock, including pigs, cattle, chickens, and horses, have been developed. These could be used to examine host-pathogen interactions, such as interaction between enteric viruses and epithelial cells, and are potential alternatives to in vivo systems. However, there are very limited studies regarding species-specific medium to cultivate and establish intestinal organoids of livestock. Species-specific medium is applied differently between species for the cultivation of intestinal organoids, and its modification is important for the maintenance of specific cell types or genes from the cellular diversity of the intestinal epithelium. In this study, we introduce the histological development of a 3D culture system and a species-specific medium for the cultivation of intestinal organoids in livestock. Finally, we discuss the importance and future perspectives of intestinal organoids in the fields of agriculture and biotechnology for various purposes.
This study aimed to develop an environmentally friendly horticultural substrate that promotes the growth of organic onion(Allium cepa L.) seedlings. Four substrates were prepared by mixing different ratios of peatmoss, cocopeat, perlite, vermiculite, and zeolite. Their pH and electrical conductivities ranged from 5.12 to 5.60 and from 0.07 to 0.08 dS/m, respectively. Beneficial microorganisms, molasses, sesame oil cake, and sulfur were added to one substrate combination, which was named “environmentally friendly horticultural substrate” (EFHS). The chemical properties of the EFHS were analyzed and compared with a commercial organic horticultural substrate (OHS) and a commercial general horticultural substrate (GHS). The organic matter and inorganic ion (nitrogen, potassium, calcium, zinc, and sulfur) contents in the EFHS were higher than those in the OHS and GHS. The germination rates of onion seeds in the EFHS were higher than in the OHS and GHS. The mean number of leaves, sheath diameter per seedling, and weight of 30-day-old seedlings grown on the EFHS were greater than those of seedlings grown on the OHS and GHS. The length of the seedlings grown on the EFHS was comparable to that of the seedlings grown on the OHS and greater than that of the seedlings grown on the GHS. Overall, the growth parameters of onion seedlings grown on the EFHS were better than those of seedlings grown on the OHS and GHS, suggesting that the EFHS may be used as an organic horticultural substrate for growing organic onion seedlings.