Low temperature is a major abiotic stress that adversely affects rice production in rice cultivation regions of the world. Low temperature during the rice growing season, can inhibit growth and development at any development stage, from germination to grain filling. Among the rice growth stage, reproductive stage was known as the most sensitive to low temperature, causing sterile grain and lead yield loss. However, low temperature during the grain filling stage also, may cause delay and incomplete grain maturation. In this study QTL analysis were performed to identify the QTLs associated with percent of grain filling under low temperature condition during the grain filling stage. A 139 RIL derived from a cross between ‘Milyang23’ (Tong-il, cold susceptible) and ‘Gihobyeo’(Japonica, cold tolerance) were exposed to air and water of 17℃ at the same time for 14 days during the grain filling stage. One significant QTL associated to percent of grain filling was detected on chromosome 7. This QTL could explain 14.7% of the phenotypic variance for percent of grain filling. We have the plan to confirm the detected QTL through further study.
The purpose of development new variety ‘Miho’ (Hordeum vulgare L.) is a favorite with livestock feed and develop varieties resistant to disease and lodging. ‘Miho’ was carrying the growth habit of group Ⅲ, green and mid-wide leaf. Awn that are related to preference of livestock is a semi-smooth awn. This cultivar had 96cm of culm length, 650 of spikes per m2. Heading date of ‘Miho’ is April 27, and maturing dates on May 30, which were later than cultivar ‘Youngyang’. It also showed strong winter hardiness, and similar resistance to shattering and BaYMV compared with those of check one. The best thing among the traits of one is a new good quality with the plant green at the latter growing period. The average forage dry matter yield in the regional yield trial was about 13.1, 12.1 MT per ha in upland and paddy field, respectively, which were 9%, 2% higher than that of the check cultivar. It’s also showed 6.8% crude protein, 27.1% ADF (acid detergent fiber), and 67.5% TDN (Total Digestible Nutrients), including higher silage quality for whole crop barley. This cultivar would be suitable for the area whose daily minimum temperature was above -8℃ in January in Korean peninsula.
The world population has been continuously increasing and has led to the growing demand for rice. It is therefore important to pay as much attention to the enhancement of grain yield as well as grain quality. Grain size is one of the major factors determining grain yield and quality. A large number of genes are known to be involved in regulation of grain size. However, the influence of their haplotype combination is still largely unknown. Of the previously characterized genes, we especially focused on the six genes (GS3, GS5, GS6, GW2, qSW5/GW5, and GW8/OsSPL16) to expand our understanding of regulation of grain size and to develop a regression equation model that can be used for molecular rice breeding. A total of 215 rice germplasms, which originated or developed from 28 rice-consuming countries, were used in this study. The genotyping analysis revealed that different alleles of the six genes were widely distributed in our germplasm collection and also showed significant associations with the differences in grain size. Interestingly, we found that the relatively small number of haplotype combinations preserved in diverse rice germplasms and showed significant associations with the differences in grain size. In addition, we also found that a single gene-specific allelic variation plays an important role in regulation of grain size in the presence of a certain type of haplotype combination. Based on these results, we developed a regression equation model for prediction of rice grain size. We expect that our model can be used for rice molecular breeding to develop new rice varieties having a grain size in a particular range.
Tissue-specific promoters are a very useful tool for manipulating gene expression in a target tissue or organ; however, their range of applications in other plant species has not been determined, to date. In this study, we identified two late pollen-specific rice promoters (ProOsLPS10 and ProOsLPS11) via meta-anatomical expression analysis. We then investigated the expression of both promoters in transgenic rice (a homologous system) and Arabidopsis (a heterologous system) using ProOsLPS10 or ProOsLPS11::GFP-GUS constructs. As predicted by microarray data, both promoters triggered strong GUS expression during the late stages of pollen development in rice, with no GUS signals detected in the examined microspores and sporophytic tissues. Interestingly, these promoters exhibited different GUS expression patterns in Arabidopsis. While in Arabidopsis, the OsLPS10 promoter conferred GUS expression at the uni- and bi-cellular macrospore stages, as well as at the shoot apical region during the seedling stage, the OsLPS11 promoter was not active in the pollen at any stage, or in the examined sporophytic tissues. Furthermore, by performing a complementation analysis using a sidecar pollen (scp) mutant that displays developmental defects at the microspore stage, we found evidence that OsLPS10, which can be an applied promoter expressed in Arabidopsis, is useful for directing gene expression in the early stages of pollen development. Our results indicate that the OsLPS10 and OsLPS11 promoters can drive the expression of target genes during the late stages of pollen development in rice, but not in Arabidopsis. Our results also emphasize the necessity of confirming the applicability of an established promoter to heterologous systems.
Leaves are the organ for photosynthesis, respiration and transpiration, and have a major effect on crop yield. Therefore, leaf shape and structure are important agronomic traits in breeding for ideal type plant. We obtained a new abaxially rolled leaf mutant from Ilpum(Oryza sativa ssp. japonica) by the treatment of ethyl methane sulfonate(EMS). The abaxially rolled leaf mutant showed reduced plant height and panicle length, increased tiller number and panicle number than Ilpum. LRI(Leaf rolling index) analysis showed that the mutant have high value compared to the wild-type. In cross section analysis, the mutant was observed to have increased of bulliform cell number and size, and led to the outcurved leaf rolling. The phenotypes of the F1 plants derived from the cross between the mutant and Ilpum were normal. In F2 population, segregation ratio between the wild type and the mutant was 3:1. This genetic analysis indicated that leaf rolling is controlled by single recessive gene. Bulked segregant analysis(BSA) and genetic mapping were conducted using F2 population derived from the cross between mutant and Milyang23(Oryza sativa ssp. indica). According to the results, the gene was located on the long arm of chromosome2. Fine mapping is in progress.
Clubroot is a devastating disease caused by Plasmodiophora brassicae and results in severe losses of yield and quality in Brassica crops including Brassica oleracea. Therefore, it is important to identify resistance gene for CR disease and apply it to breeding of Brassica crops. In this study, we applied genotyping-by-sequencing (GBS) technique to construct high resolution genetic map and mapping of clubroot resistance (CR) genes. A total of 18,187 GBS markers were identified between two parent lines resistant and susceptible to the disease, of which 4,103 markers were genotyped in all 78 F2 plants generated from crossing of both parent lines. The markers were clustered into nine linkage groups spanning 879.9 cM, generating high resolution genetic map enough to refine reported reference genome of cabbage. In addition, through QTL analysis using 78 F2:3 progenies and mapping based on the genetic map, two and single major QTLs were identified for resistance of race 2 and race 9 of P. brassicae, respectively. These QTLs did not show collinearity with CR loci found in Chinese cabbage (Brassica rapa) but roughly overlapped with CR loci identified in cabbage for resistance to race 4. Taken together, genetic map and QTLs obtained in this study will provide valuable information to improve reference genome and clubroot resistance in cabbage.
Exposure to ionizing radiation is regarded as a kind of abiotic stresses that can change the expression of genes in living organisms. This study aimed on investigating the variations in gene expressions induced by two different types of irradiations with different doses, which were low linear energy transfer (LET) gamma rays (100, 200, and 400 Gy) and high LET ion-beams (20, 40, and 80 Gy) on rice. RNA sequencing was carried out using the Illumina HiSeq-2500 platform. The average amount of reads were 4.8 Gb per individual, and 5 to 8% of the reads were removed after quality control. More than 90% of the RNA-seq reads were mapped to the rice reference genome sequence (IRGSP-1.0). A total of 247 differentially expressed genes (DEGs) were identified by comparison of the gene expression levels between the wildtype and the irradiated individuals. The 247 DEGs were divided into five modules and 27 intra-modular hub genes were found using the weighted correlation network analysis (WGCNA) method. The MEturquiose module had the most number of genes with 75 related to carbohydrate and small molecule metabolic processes. The co-expression network reconstructed using ARACNE (algorithm for reconstruction of accurate cellular networks) showed specific up- or down-regulation of the genes in each module according to the types and doses of radiation. This study will contribute to understanding the gene expression responses to ionizing irradiation.
The number of spikelets per panicle in rice is determined by characters of the panicle such as the number of primary branches (PB) and secondary branches (SB) and panicle length (PL). It is a quantitative traits controlled by several genes. In this study, the nucleotide polymorphism and haplotype diversity of coding region of genes related to number of spikelets per panicle (SPP), including APO1, APO2, FON1, DEP1, GN1a, GHD8, HD1, and SP1, were analyzed using 45 varieties which showed significant phenotypic variations for PL, PB, SB and SPP. Significant correlations were observed among all the panicle traits. A total of 151 polymorphisms, including 114 SNPs and 26 indels were detected in coding region of 8 genes which constructed 52 haplotypes. Neutrality tests revealed that population subdivision event or balancing selection occurred in locus of APO2, FON1, and HD1 whereas no significant deviation from neutrality was detected in the other genes, suggesting a neutral evolution. Based on the results of GLM association analysis, 34 polymorphic sites in 6 genes were significantly related with the 4 panicle related-traits.
Onion and other Allium vegetables have been valued since antiquity for their pungent flavor and aroma. Modern science has confirmed traditional benefits that the organosulfur compounds that impart flavor also confer significant human health benefits such as reduced blood clotting and antimicrobial properties. Glucose, fructose and sucrose comprises majority of onion bulb dry matter content. The sugars, pyruvic acid accumulation and transcript level of some transcription factors involved in the biosynthesis of high sugars and pyruvic acid. These profiles were compared with two different lines 36101 (early) and 36122(Late) of bulb onion (Allium cepa L.) growing under drought and photoperiod condition using High Performance Liquid Chromatography (HPLC) and Quantitative real time PCR using FT genes. We identified the gene AcFT4 was responsible for early and late bulb intiation in the onion lines. The cultivar lines 36101and 36122 were used to identify potential genes controlling pungency and sugar. The comparative analysis of two lines showed significant positive phenotypic and genetic correlations. Sugar and pungency profile showed significant difference between two lines. FT gene expression and pungency level was high in onion lines during drought stress. In this study, we proposed the biochemical characterization of two line and genes involved in the bulb formation were also studied. There is a correlation between sugars and pungency level during the drought stress. These results could be presumably used as useful information to obtain onion varieties rich in sugars and pungency.
Magnoliae Flos (Sini in Korean) is one of the most important oriental medicinal plants. In the Korean Herbal Pharmacopeia, the bud of the all species in Manolia denudate and Manolia genus were regarded as the botanical sources for ‘Sini’. Most the dried bud of Manolia denudata, Manolia biondii and Manolia sprengeri were used as ‘Xin-yi’ in China. Therefore, the purpose of this study was to determine and compare the ‘Magnolia’ species, four species including Manolia denudata, M. biondii, M. liliiflora and M. Kobus were analysis of sequencing data revealed DNA polymorphisms. The based on tRNA coding leucine/phenylalanine (trnL-F) and NADH-plastoquinone oxidoreductase subunit 5 (ndhF) sequences in chloroplast DNA. For the identification of ‘Magnolia’ species, polymerase chain reaction (PCR) analysis of chloroplast DNA regions such as ndhF have proven an appropriate method. A single nucleotide polymorphism (SNP) has been identified between genuine “Sini” and their fraudulent and misuse. Specific PCR primers were designed from this polymorphic site within the sequence data, and were used to detect true plants via multiplex PCR.
In sustainable viticulture, green manure represents a safe and non-polluting way to bring large quantities of organic matter into the soil. The cultivation of green manure crops plays an important role in soil quality and sustainability of agricultural system. This study was conducted to evaluate the effects of green manure fertilization on yield and quality of the Campbell Early grape variety in the organic vineyard. Hairy vetch was the more productive green manure crop, yielding higher dry materials. Average yields of grape were significantly greater in hairy vetch + rye (13.02 ton ha-1) than nature weed (11.65 ton ha-1), respectively. The concentrations of total as well as individual anthocyanins were consistently higher with hairy vetch treatment compared with rye and nature weed, thus making the green manure cultivation is an environmentally friendly cultivation to increase the yield and anthocyanin contents in organic grape.
We assessed the effects of various dietary conditions on the growth, phenotypic traits, and morphometric dimensions of rock bream, Oplegnathus fasciatus and on the morphometric dimensions of sectioned olive flounder, Paralichthys olivaceus. Rock bream in the fed group increased in body weight, standard length, and condition factor, but these parameters decreased significantly for fish in the starved group (P < 0.05). The head connection dimensions of fish in the fed group decreased, while for starved fish there was increase in external morphometric dimensions (P < 0.05). In both species, sectioned morphometric analysis revealed that fish in the fed group had a larger body circumference and cross-cut sectional area, and greater cross-cut section height, relative to the starved group (P < 0.05).
Measurements of closely related sets of classical and truss dimensions were analyzed to discriminate species of scorpaenidae including the dark banded rockfish, Sebastes inermis, the black rockfish, S. schlegeli, and gobioninae including the striped shiner, Pungtungia herzi, and the slender shiner, Pseudopungtungia tenuicorpa. The measurements of the dimensions were arc sin square root transformed, and compared as a function of the standard length of each species for statistical analysis. For values of the classical dimensions of the rockfish, 6 were greater for the dark banded rockfish than for the black rockfish, 1 value was smaller for the former, and for 2 values there was no statistically significant difference (P > 0.05). For values of the classical dimensions of the shiners, 9 values were greater for the striped shiner than for the slender shiner, 2 values were smaller for the former, and for 1 value there was no statistically significant difference (P > 0.01). For values of the truss dimensions of the rockfish, 6 were greater for the dark banded rockfish than for the black rockfish, 1 was smaller for the former, and for 4 values there was no statistically significant difference (P > 0.05). For values of the truss dimensions of the shiners, 13 values were greater for the striped shiner than for the slender shiner, 3 values were smaller for the former, and for 6 values there was no statistically significant difference (P > 0.01). The dimension sets used in this study may be useful as taxonomic indicators for discriminating among fish species in Korea.
The Korean native pig (KNP) have been considered as animal models for animal biotechnology research because of their relatively small body size and their presumably highly inbred status due to the closed breeding program. However, little is reported about the use of KNP for animal biotechnology researches. This study was performed to establish the somatic cell nuclear transfer (SCNT) protocol for the production of swine leukocyte antigens (SLA) homotype-defined SCNT KNP. The ear fibroblast cells originated from KNP were cultured and used as donor cell. After thawing, the donor cells were cultured for 1 hour with 15 μM roscovitine prior to the nuclear transfer. The numbers of reconstructed and parthenogenetic embryos transferred were 98 ± 35.2 and 145 ± 11.2, respectively. The pregnancy and delivery rate were 3/5 (60%) and 2/5 (40%). One healthy SLA homotype-defined SCNT KNP was successfully generated. The recipient-based individual cloning efficiency ranged from 0.65 to 1.08%. Taken together, it can be postulated that the methodological establishment of the production of SLA homotype-defined cloned KNP can be applied to the generation of transgenic cloned KNP as model animals for human disease and xenotransplantation researches.
Diffuse involvement of the right pulmonary artery (PA) associated with fistula between the PA and coronary artery is report-ed in a woman with Takayasu’s arteritis. Both the subclavian arteries were totally occluded and drained by the meanderinged artery arising from both common carotid arteries. Lung perfusion scan revealed perfusion defect of right lung. Two fistulas were identified. A large fistula was between the right PA and left circumflex artery. A small fistula was between the right PA and left anterior descending artery. This is a rare case of Takayasu’s arteritis presenting with a coronary – pulmonary artery fistula that is secondary to a diffuse unilateral involvement of PA.
The Maillard reaction is a complex reaction that occurs between carbonyl and amine groups during food pro-cessing and storage. In addition, it produces a large number of Maillard reaction products (MRPs), which have an importantrole in determining food characteristics including aroma, color, flavor, and texture. Importantly, recent studies have beenconducted that the Maillard reaction products and their ferments with lactic acid bacteria (LAB) induced specific biologicalcharacteristics including antimicrobial, antioxidative, and antihypertensive activities as well as improved their physiologicalfeatures such as the heat stability and emulsifying properties. Therefore, we described on new insights for enhanced physi-ologic and biologic functions of MRPs through LAB fermentation.
In the present work we investigated the effects of lactic acid bacteria (LAB) isolated from kimchi on prolifera-tion and apoptosis of cancer cells. The cell-free supernatant concentrate of Lactobacillus brevis OPK-3 significantly retar-ded the proliferation of human acute promyelocytic (HL60), human histiocytic (U937), and mouse lymphocytic (L1210)leukemia cell lines in vitro at concentrations over 2.25-9.0 mg/mL. The treatments of the concentrate leaded to the increasedapoptosis and decreased mitochondrial transmembrane potential in cultured U937 leukemia cell lines. In addition, the treat-ments of the concentrate showed the increased expression of p53 gene in cultured U937 and HL60 leukemia cell lines. Onthe other hand, the cell-free supernatant concentrate of control L. brevis strain (KCCM 41028) showed a relatively littleeffect on the cancer cell proliferation, apoptosis, and mitochondrial transmembrane potential at the similar concentrationranges compared with the L. brevis OPK-3 samples. These results suggest that the consumption of L. brevis OPK-3 could bebeneficial for the inhibitory action on leukemia cell proliferation and for the stimulatory action on the cancer cell apoptosis.
We present a by-product of our long term photometric monitoring of cataclysmic variables. 2MASS J18024395 +4003309 = VSX J180243.9 +400331 was discovered in the field of the intermediate polar V1323 Her observed using the Korean 1-m telescope located at Mt. Lemmon, USA. An analysis of the two-color VR CCD observations of this variable covers all the phase intervals for the first time. The light curves show this object can be classified as an Algol-type variable with tidally distorted components, and an asymmetry of the maxima (the O’Connell effect). The periodogram analysis confirms the cycle numbering of Andronov et al. (2012) and for the initial approximation, the ephemeris is used as follows: Min I. BJD = 2456074.4904+0.3348837E . For phenomenological modeling, we used the trigonometric polynomial approximation of statistically optimal degree, and a recent method “NAV” (“New Algol Variable”) using local specific shapes for the eclipse. Methodological aspects and estimates of the physical parameters based on analysis of phenomenological parameters are presented. As results of our phenomenological model, we obtained for the inclination i=90°, M1=0.745M◉, M2=0.854M◉, M=M1+M2=1.599M◉, the orbital separation a=1.65·109m=2.37R◉ and relative radii r1=R1/a=0.314 and r2=R2/a=0.360. These estimates may be used as preliminary starting values for further modeling using extended physical models based on the Wilson & Devinney (1971) code and it's extensions