In ROK, when designing a spent nuclear fuel (SNF) storage facility and cask, criticality safety analysis is performed assuming that the SNF is a fresh fuel in order to ensure conservatism. Storage and transportation capacity can be increased by more than 30% by applying the burnup credit, but it has not been applied to the management of SNF. On the other hand, currently in criticality safety analysis, average burnup value is applied to axial burnup profiles, and it is not conservative because burnup of the middle of SNF is greater than average value. Thus, measuring burnup of SNF with high accuracy contributes to the economics and safety of the management of SNF. In this paper, nondestructive burnup evaluation methods for SNF are reviewed in order to study how to measure burnup more accurately. Gamma ray spectrometry and neutron counting have been used as non-destructive burnup evaluation methods of SNF. Gamma spectrum analysis uses the ratio of Cs-134/Cs-137 or Eu-154/Cs-137. The ratio of Cs-134/Cs-137 is used to SNF with cooling time less than 20 years, and the ratio of Eu- 154/Cs-137 is used to SNF with cooling time more than 20 years due to their half-life. In spectrum analysis, detector sensors with high efficiency and energy resolution are needed to clarify each spectrum. High-purity germanium (HPGe) detector has high energy resolution. However, it is not suitable for the analysis of the SNF in the spent fuel pool because it requires separate cooling system and large volume. Thus, CdZnTe (CZT) detector, which has medium energy resolution, is used as a detector of gamma ray spectrometry for the analysis of the SNF in the spent fuel pool. Recently, LaBr3 detector has been commercialized. Although it is difficult to compare clearly due to different conditions such as detector volume and crystal size, LaBr3 detector showed better resolution than CZT in the entire energy region. Neutron counting method has a large error compared to gamma spectrometry because the neutron flux is lower than gamma ray, and neutron absorption reaction, induced fission, and pool environment have to be considered. Large quantity of gamma energy is deposited in the detector by the fission fragments near the SNF. Therefore, fission chambers, which have the highest insensitivity to gamma rays, must be used as neutron detector in order to avoid noise from gamma rays.
A tensile test is performed to obtain the mechanical property data of the spent fuel cladding. In general, the elastic modulus, elongation, yield stress, tensile stress, etc. are obtained by axial tensile test of cladding attaching an extensometer. However, due to the limitation in the number of specimens for spent nuclear fuel that can be made, the ring tensile test (RTT) whose required length of the specimen is short is mainly performed. In the case of RTT, an extensometer or strain gauge cannot be attached because the gauge part of the specimen is formed around the cladding and is short. In addition, since a load is applied in the radial direction of the cladding, a curved portion of the circular cladding is spread out and becomes straight, and then the cladding is tensioned. For this reason, it is difficult to obtain the stress-strain curve directly from the RTT results. Isight, which is used to identify the optimization design parameters, was used to build an optimization process that minimizes the difference between the RTT and the analysis to estimate the material property. For this, the elastic modulus, plastic strain, and the radius of the RTT jig were taken as fixed variables. As variables, isotropic hardening data and plastic stress were taken. The objective function was taken as the minimization of the area difference of the load-displacement curve obtained from the tests and analysis, of the difference in the magnitude of the maximum reaction force, and of the difference in the location where the maximum reaction force occurred. Optimization workflow was configured in the following order. First, using the calculator component, plastic stress design variables were created. Next, ABAQUS was placed to perform analysis using design variables, and the reaction force or displacement was calculated. After that, the reaction force was calculated considering the 1/4 symmetry condition using the script component. After that, the data matching component performed quantitative comparison of test and analysis data. Finally, by utilizing the exploration component, the plastic stress design variable that minimizes the difference in the objective function was obtained by automatically changing six optimization algorithms. In this paper, the constructed optimization process and the obtained plastic stress by applying it to the SUS316 RTT results are briefly described. The established optimization process can be utilized to obtain mechanical property from the results of the cladding RTT of spent nuclear fuel or new material.
For the transport of spent nuclear fuel, it is necessary to evaluate the amount of radioactivity for each assembly and the total amount of radioactivity for each cask. Currently, KHNP is evaluating the radioactivity using the Express mode of the OrigenArp program in the SCALE6.1 code. Express mode is a method to evaluate the radioactivity assuming that it has been burned with the same power per cycle, and Detail mode is a method to evaluate the actual combustion history such as power and cooling time for each cycle. For a total of 3,795 assemblies, including 1,391 assembliess for Kori Unit 1, 1,427 assemblies for Hanbit Unit 2, and 977 assemblies for Hanul Unit 3, the radioactivity was evaluated in Express mode and Detail mode, respectively, and the results were compared. As a result of the evaluation, it was confirmed that the results of the Express mode were evaluated more conservatively by 2.5~12.9% than that of the Detail mode. Accordingly, KHNP established a plan to change the evaluation method from Express mode to Detail mode in order to improve the accuracy of the radioactivity assessment results and eliminate conservatism.
The skeleton of fuel assembly is composed of top nozzle, bottom nozzle, grids, and guide tubes. In the reactor core, all the parts of the fuel assembly suffer degradations due to the condition of high temperature, pressure and water environment. Therefore, many material properties of high temperature mechanical strength, corrosion and irradiation resistance have been considered to choose the material for fuel assembly parts in the fuel development stage. The guide tubes have important roles to connect each parts and support the load of fuel assembly while the fuel is lifted. In Westinghouse 14×14 standard fuel assembly, Zircaloy-4 was used for the material of the guide tubes. Zircaloy-4 has a resistance to water corrosion and maintain good mechanical properties after the discharge from the core, so this alloy is also utilized for a fuel rod cladding material although the microstructure is slightly different due to the heat treatment difference. Thus, it is expected that there is no issue regarding the guide tube integrity after the discharge and during the storage in the pool, especially in case of low burn-up. However, the surface oxidation and resultant hydrogen pick-up can affect to the embrittlement to the Zr alloy. So, it is needed to know the actual status of spent fuel assembly by performing post-irradiation examination. In this study, the degradation level of the guide Tubes in low burn-up spent fuel assembly was investigated using the KAERI PIE facility in order to make some data which can be utilized to the baseline for evaluating the integrity of the spent fuel skeleton.
The management before disposal of spent nuclear fuel is an essential process for safe management. It is important to determine the amount of nuclide inventory in order to ensure the integrity of spent nuclear fuel, as radiation generated from the nuclides is generated along with residual heat in the spent nuclear fuel. Based on the data on the characteristics of spent nuclear fuel generated in Korea, the correlation equation between burnup and enrichment was derived by referring to overseas cases (Sweden). Source term analysis was performed using the SCALE ORIGEN ARP code by securing the burnup history of nuclear fuel. Calculation was performed by inputting the combustion history of the fuel WH14×14 and WH17×17 as a reference for CE16×16 spent fuel. Through this study, the relationship was identified using the burnup, enrichment, and cooling time factors that influence the characteristics of spent nuclear fuel. In addition, the total source and spectrum data from neutrons and gamma sources were used to find out the characteristics of fuel.
As drone technology and industry develop around the world, the use of drones are increasing in number and expanding to different fields. On the other hand, illegal flight and terrorist incidents using drones are also increasing day by day. In Korea, it is reflected in the “Design Basis Threat (DBT)”, which is the standard for designing and evaluating the physical protection system of nuclear power plants in accordance with the “Act on Physical Protection and Radiological Emergency”, that nuclear power plants continue to establish physical protection against drone threats. A total of 141 drone attacks or incidents have occurred around the world since 2015. Cases related to the Russian-Ukraine war, in which so many cases occurred, were excluded. There were 112 cases (79%) of terrorism or suspected terrorism using a single drone. There were 4 cases of terrorism using more than 5 drones, and a total of 20 drones were used to attack an oil facility in Yemen (2019). By region, a total of 111 incidents occurred in Middle East & North Africa. By country, there were 49 cases in Iraq, 35 cases in Saudi Arabia, and 8 cases in Syria. Among major countries, three cases occured in Korea, five in the United States, two in England, Canada, and Italy, and one in Japan and France. Since 2021, there have been 15 drone attacks. Multiple drones were used in attacks targeting military or large-scale Important National Facilities such as the Saudi oil refinery, Indian Kashmir air base, and reconnaissance of Iranian Natanz nuclear and surrounding military facilities. Also in 89% of the cases, the drones were loaded with explosives in order to cause large-scale damage. Accordingly, nuclear power plants, which are important national facilities, need to establish a system that can detect and respond to multiple drones. Furthermore, additional protective measures are needed for areas that are expected to be severely damaged which can be established by evaluating the impact of explosives on major points in the plant. In additionthere is a high possibility of terrorism by organizations aiming for national turmoil rather than individual terrorists. So it is important to identify signs of terrorism in advance and prepare through cooperation with related agencies.