검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 17,549

        2598.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Phaya-Thon-Zu temple has a unique architectural style connected by the three temples, and cultural values are highly as murals remain on some of the walls. However, various damages in internal walls and vaults have occurred due to earthquake and environmental influences. In order to analyze these damages, accurate structural analysis is required, but structural modeling is difficult, because Phaya-Thon-Zu temple is the complex masonry structure which is stacked with small bricks. Therefore, this study intends to analyze the causes of damages by examining collapse mechanism for cross section and longitudinal section of vaults in the entrance hall and shrine by using thrust line analysis, which is a geometric method, and to compare it with the actual damage situation.
        4,000원
        2599.
        2020.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Cerium oxide (ceria, CeO2) is one of the most wide-spread oxide supporting materials for the precious metal nanoparticle class of heterogeneous catalysts. Because ceria can store and release oxygen ions, it is an essential catalytic component for various oxidation reactions such as CO oxidation (2CO + O2 2CO2). Moreover, reduced ceria is known to be reactive for water activation, which is a critical step for activation of water-gas shift reaction (CO + H2O → H2 + CO2). Here, we apply van der Waals-corrected density functional theory (DFT) calculations combined with U correction to study the mechanism of water chemisorption on CeO2(111) surfaces. A stoichiometric CeO2(111) and a defected CeO2(111) surface showed different water adsorption chemistry, suggesting that defected CeO2 surfaces with oxygen vacancies are responsible for water binding and activation. An appropriate level of water-ceria chemisorption energy is deduced by vdW-corrected non-local correlation coupled with the optB86b exchange functional, whereas the conventional PBE functional describes weaker water-ceria interactions, which are insufficient to stabilize (chemisorb) water on the ceria surfaces.
        4,000원
        2600.
        2020.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We prepare ZnO nanoparticles by environmentally friendly synthesis using Cyathea nilgiriensis leaf extract. Various phytochemical constituents are identified through the assessment of ethanolic extract of plant Cyathea nilgiriensis holttum by GC-MS analysis. The formation of ZnO nanoparticles is confirmed by FT-IR, XRD, SEM-EDX, TEM, SAED and PSA analysis. TEM observation reveals that the biosynthesized ZnO nanopowder has a hexagonal structure. The calculated average crystallite size from the high intense plane of (1 0 1) is 29.11 nm. The particle size, determined by TEM analysis, is in good agreement with that obtained by XRD analysis. We confirm the formation of biomolecules in plant extract by FT-IR analysis and propose a possible formation mechanism of ZnO nanoparticles. Disc diffusion method is used for the analyses of antimicrobial activity of ZnO nanoparticles. The synthesized ZnO nanoparticles exhibit antimicrobial effect in disc diffusion experiments. The biosynthesized ZnO nanoparticles display good antibacterial performance against B. subtilis (Gram-positive bacteria) and K. pneumonia (Gram-negative bacteria). Bio-synthesized nanoparticles using green method are found to possess good antimicrobial performance.
        4,000원