검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 14,972

        247.
        2023.11 구독 인증기관·개인회원 무료
        Selenium (Se), a vital trace element found naturally, plays a pivotal role for human being in low concentrations. Notably, within the spectrum of essential elements, Se possesses the most restricted range between the dietary deficiency (< 40 μg day-1) and the acute toxicity (> 400 μg day-1). Therefore, it is of paramount importance to maintain bioavailable Se levels within permissible limits in our drinking water sources. Among the various Se species, inorganic variants such as selenite (SeO3 2-) and selenate (SeO4 2-) are highly water-soluble, with SeO3 2- being notably more toxic than SeO4 2-. Consequently, the primary focus lies in effectively sequestering SeO3 2- from aquatic environments. Numerous methods have been investigated for SeO3 2- adsorption, including the use of metal oxides and carbon-based materials. Especially, iron oxides have garnered extensive attention due to their water stability and environmentally friendly properties. Nevertheless, their limited surface area and insufficient adsorption sites impose constraints on their efficacy as materials for SeO3 2- removal. Recently, metal–organic frameworks (MOFs), composed of metal centers bridged by organic linkers have increasingly focused as promising adsorbents for SeO3 2- removal, offering significant advantages such as large surface areas, high porosities, and structural versatility. Furthermore, there is a growing interest in defective MOFs, where intentional defects are introduced into the MOF structure. This deliberate introduction of defects aims to enhance the adsorption capacity by increasing the number of available adsorption sites. In this context, herein, we present the Fe-BTC (BTC = 1,3,5-benzenetricarboxylic acid) synthesized via a post-synthetic metal-ion metathesis (PSMM) approach, which is one of the defect engineering methods applied to metal sites. We employ the well-established MOF, HKUST-1, known for its substantial surface area, as the pristine MOF. While the pristine MOF has a crystalline phase, during the PSMM process, Fe-BTC is transformed into an amorphous phase by allowing the introduction of numerous metal defect sites. These introduced metal defect sites serve as Lewis acidic sites, enhancing the adsorption capability for selenite. Furthermore, despite its amorphous nature, Fe-BTC exhibits a substantial surface area and porosity comparable to that of the crystalline pristine MOF. Consequently, Fe-BTC, distinguished by its numerous adsorption sites and its high porosity, demonstrates a remarkable capacity for selenite adsorption.
        248.
        2023.11 구독 인증기관·개인회원 무료
        Owing to the rapid rise of global energy demands, the operation of nuclear power plants is still indispensable. However, following the nuclear accident at Fukushima-Daiichi in 2011, the secure sequestration of radioactive waste has become critical for ensuring safe operations. Among various forms of nuclear wastes, capturing radioactive organic iodide (ROIs, e.g., methyl iodide, ethyl iodide, and propyl iodide) as one of the important species in gas phase waste has been challenged owing to the insufficient sorbent materials. The environmental release of ROIs with high volatility can give rise to adverse effects, including the accumulation of these substances in the thyroid and the development of conditions such as hypothyroidism and thyroid cancer. Compared to an iodine molecule, ROIs exhibit low affinity for conventional sorbents such as Ag@mordenite zeolite and triethylenediamine-impregnated activated carbon (TED@AC), resulting in lower sorption rates and capacities. Furthermore, in conditions resembling practical adsorption environments with high humidity, the presence of H2O significantly impedes the adsorption process, leading to a nearly complete cessation of adsorption. To address these issues, metal-organic frameworks (MOFs) can be effective alternative sorbents owing to their high surface area and designable and tailorable pore properties. In addition, the wellfined crystalline structures of MOFs render in-depth study on the structure-properties relationship. However, there has been limited research on the adsorption of ROIs using MOFs, with the majority of adsorption processes relying on highly reversible physisorption. This type of ROIs adsorption not only exists in a precarious state that is susceptible to volatilization but also exhibits significantly reduced adsorption capabilities in humid environments. Thus, for the secure adsorption of the volatile ROIs, the development of sorbents capable of chemisorption is highly desirable. In this study, we focused on ROIs adsorption by electrophilic aromatic substitution with the electron-rich m-DOBDC4− (m-DOBDC4− = 4,6-dioxo-1,3-benzenedicarboxylate) present in Co2(m -DOBDC). The chemisorption of ROIs via electrophilic aromatic substitution not only leads to the formation of C-C bonds, ensuring stability but also triggers color changes in the crystal by interacting with open-metal sites and iodide ions. Leveraging these advantages, we developed an infrared radiation-based sensing method that demonstrates superior performance, exhibiting high adsorption capacities and rates, even under the challenging conditions of high-humidity practical environments.
        249.
        2023.11 구독 인증기관·개인회원 무료
        Within the air purification system of a nuclear power plant, specific radioactive isotopes are extracted from gases through adsorption onto activated carbon. To properly dispose of used activated carbon, it is essential to determine the concentration of radioactive nuclides within it. This study discusses the application of the pyrolysis method for analyzing the concentrations of 3H and 14C in spent activated carbon. The pyrolysis was conducted using Raddec’s Pyrolyser, with adjustments made to parameters such as temperature profiles, airflow rates, sample quantities, and trapping solution volumes. The evaluation method for the pyrolysis of activated carbon to analyze 3H and 14C involved adding 3H and 14C sources to the activated carbon before use and subsequently assessing the recovery rates of the added sources in comparison to the analysis results.
        250.
        2023.11 구독 인증기관·개인회원 무료
        Currently, non-volatile nuclides such as 94Nb, 99Tc, 90Sr, 55Fe, and 59/63Ni are used a sequential separation. In this study, we developed a separation for 99Tc and 90Sr by a carbonate precipitation. Sodium Carbonate (Na2CO3) was inserted in the aqueous sample from a Dry Active Waste (DAW) and a carbonate precipitation was produced. The precipitate is composed of di- or tri-valent element such as Co, Sr, Fe, Ni and the supernatant is composed of mono-valent element (Cs) and anion materials (ReO4 -, TcO4 -). In DAW, it was confirmed that the recovery of 90Sr (precipitate) and 99Tc (supernatant) were > 90%, respectively. The precipitate and supernatant separated by using a Sr-resin and an anion-exchange resin, respectively. The separated samples were measured by a Liquide Scintillation Counter (LSC, 90Sr) and Induced-Coupled Plasma-Mass Spectroscopy (ICPMS, 99Tc).
        251.
        2023.11 구독 인증기관·개인회원 무료
        Chelating agents in low and intermediate radioactive wastes can form complexes with radionuclides and increase the mobility of the radionuclides. According to the Korea Radioactive Waste Agency (Acceptance criteria for low and intermediate radioactive waste, WAC-SIL-2022-1), if the amount of residual chelating agents in the waste are greater than 0.1%, the chemical names and residual amounts should be specified; if greater than 1%, the waste must be solidified and contain no more than 8%. The existing method for analyzing chelates in radioactive waste was based on UV–Visible spectrophotometry (UV-Vis), but the new method is based on liquid chromatography/mass spectrometry (LC-MS). The analysis was performed in aqueous solution before applying to real samples. Since the real sample may contain several heavy metals, it is expected that the chelates will exist as complexes. Therefore, 1.0×10-4 mol L-1 of EDTA (Ethylenediaminetetraacetic acid), DTPA (Diethylenetriaminepentaacetic acid), NTA (Nitrilotriacetic acid), and excess metals in aqueous solution were analyzed using HPLC using RP (Reverse Phase) column and HILIC (Hydrophilic interaction) column. When the RP column was used, each substance eluted without separation at the beginning of the analysis. However, when analyzed using a HILIC column, the peaks of each substance were separated. LC-MS measurements using HILIC conditions resulted in separations with better sensitivity.
        252.
        2023.11 구독 인증기관·개인회원 무료
        As existing nuclear power plants reach the end of their lifespan, 22 nuclear power plants in korea are scheduled to be permanently shut down and decommissioned by 2050. Chelates are used as decontamination agents during nuclear power plant operation and decommissioning, and as a result, decommissioning waste contains chelates. Chelates contained in radioactive waste are complexed with radionuclides and increases their mobility. So, qualitative and quantitative analysis of chelates contained in radioactive waste is necessary. However, the spectroscopic method (UVVis), previously used for chelate analysis in Korea takes too much time for analysis and cannot analyze two or more chemically similar chelates at the same time. Due to these problems, new methods for analyzing chelate must be developed. Overseas, many cases of chelate analysis using advanced analysis equipment have been reported. CEA in France has developed a chelate analysis method for application to radioactive waste using HPLC-MS (J. Chromatogram. A, 1276, 20-25, 2013). In this method, the existing method of measuring EDTA using a complex of Fe and EDTA was improved to measuring a complex of Ni and EDTA. Based on such overseas cases, we would like to develop an analysis method for chelates in radioactive waste. For this purpose, we will verify similar overseas papers and develop pretreatment methods for mixtures of chelates (EDTA, DTPA, NTA) and metals (Fe, Ni, Cu, etc.) in various media. Finally, we will develop a separation analysis technology for multi-component chelates in nuclear decommissioning waste based on LCMS.
        253.
        2023.11 구독 인증기관·개인회원 무료
        The ultimate objective of deep geological repositories is to achieve complete segregation of hazardous radioactive waste from the biosphere. Thus, given the possibility of leaks in the distant future, it is crucial to evaluate the capability of clay minerals to fulfill their promising role as both engineered and natural barriers. Selenium-79, a long-lived fission product originating from uranium- 235, holds significant importance due to its high mobility resulting from the predominant anionic form of selenium. To investigate the retardation behaviors of Se(IV) in clay media by sorption, a series of batch sorption experiments were conducted. The batch samples consisted of Se(IV) ions dissolved in 0.1 M NaCl solutions, along with clay minerals including kaolinite, montmorillonite, and illite-smectite mixed layers. The pH of the samples was also varied, reflecting the shift in the predominant selenium species from selenious acid to selenite ion as the environment can shift from slightly acidic to alkaline conditions. This alteration in pH concurrently promotes the competition of hydroxide ions for Se(IV) sorption on the mineral surface as the pH increases and impedes the selective attachment of selenium. The acquired experimental data were fitted through Langmuir and Freundlich sorption isotherms. From the Freundlich fit data, the distribution coefficient values of Se(IV) for kaolinite, montmorillonite, and illite-smectite mixed layer were derived, which exhibited a clear decrease from 91, 110, 62 L/kg at a pH of 3.2 to 16, 6.3, 12 L/kg at a pH of 7.5, respectively. These values derived over the pH range provide quantitative guidance essential for the safety assessment of clay mineral barriers, contributing to a more informed site selection process for deep geological repositories.
        254.
        2023.11 구독 인증기관·개인회원 무료
        In order to establish disposal plans for sludge, which is one of the untreated waste materials from domestic nuclear power plants, it is necessary to determine the radioactivity concentration of radioactive isotopes. In this study, we aim to evaluate the gross alpha radioactivity of sludge containing radioactive contaminants after pre-treatment, in order to assess the level of sludge waste and obtain analytical data for discussing disposal methods. Samples of sludge generated from nuclear power plants were pre-treated, solutionized, and prepared as analysis samples for evaluating the gross alpha radioactivity.
        255.
        2023.11 구독 인증기관·개인회원 무료
        Typically, the bottom of the effluent treatment facility at a nuclear power plant contains sediment, which is low-contamination waste consisting of sludge, gravel, sand, and other materials from which radioactive contaminants have been removed. Among these sediments, sludge is an irregular solid form consisting of small particles that are coagulated together, with radioactive isotopes containing cobalt attached. Currently, there is a record of disposing of dry active waste from domestic nuclear power plants, and efforts are underway to gather basic data for the disposal of untreated waste such as sludge, spent filter, and spent resin. In particular, the classification and disposal methods of waste will be determined based on the radioactivity concentration. Therefore, plans are being made to determine the radioactivity concentration of radioactive isotopes and establish disposal plans for sludge samples. In this study, pre-treatment and solutionization were carried out for the analysis of radioactive isotopes in sludge sampels from nuclear power plants. The deviation of the gamma radioisotope analysis results was derived to obtain an optimal sample quantity that represents the sludge.
        256.
        2023.11 구독 인증기관·개인회원 무료
        For the disposition of radioactive wastes generated from nuclear power plant, radioisotope inventory must be analyzed to determine an activity concentration of radionuclides. Radionuclides in low- and intermediate-low-level of radioactive wastes, however, can be easily classified to easyto- measure (ETM) and difficult-to-measure (DTM) nuclides. ETM nuclides are gamma emitting nuclides that is relatively easy to measure because they do not need to be destroyed for the preprocessing. On the other hands, DTM nuclides are alpha and beta emitting nuclides that need to be destroyed for the preprocessing and also need chemical separation. Currently, measurement methods for DTM nuclides are developed and in this paper measurement methods of Fe-55, Ni-59, Ni-63, Sr-90 and Tc-99 will be introduced.
        257.
        2023.11 구독 인증기관·개인회원 무료
        The radioactive contamination in the ocean has raised significant concern on the environmental impact among Asian and Pacific countries since the Fukushima Daiichi Nuclear Power Plant accident (Mar 11, 2011). The first step in determining the contamination by the radioactive material is monitoring anomalies of environmental radioactivity of interest. As a result, each country has its own environmental radioactivity surveillance program. Strontium-90 (half-life 28.8 y) is one of the radionuclides of high interest in the environment, owing to its high fission production rate and biological accumulation resulting from similar chemical behavior with calcium. The level of Strontium-90 in the seawater is very low, with a global average of about 1 mBq kg-1. Consequently, it requires large volume of seawater sample, typically ranging from 40 L to 60 L. The purification of 90Sr from seawater sample is challenging due to the high salinity and presence of stable Sr (about 7 ppm). Therefore, the conventional method for determining 90Sr is time-consuming and labor-intensive work. The author reported an advanced method, which is a more analyst-friendly and simpler method compared to the current method, for the determination of 90Sr in seawater. This method focuses on the separation of 90Y, which is equilibrium with 90Sr, utilizing a commercialized extraction resin. As a result, it takes less than 3 hours to determine 90Sr in 50 L of seawater sample and requires less labor. Additionally, this approach could be applied to the analysis of 90Sr in radioactive waste
        258.
        2023.11 구독 인증기관·개인회원 무료
        The Korea Atomic Energy Research Institute (KAERI) has facilities that are operated for the purpose of treating radioactive wastes and storing drums before sending them to a disposal site. Domestic regulations related to nuclear facility require radiological dose assessment resulting from release of gaseous radioactive effluent of nuclear facilities. In this study, ICRP-60-based dose conversion factors were applied to evaluate the radiation dose to residents in the event of operation and accident for the radioactive waste management facilities in KAERI. The radioactive gaseous effluent generated from each facility diffuse outside the exclusion area boundary (EAB), causing radiation exposure to residents. To evaluate the external exposure dose, the exposure pathways of cloudshine and radioactive contaminated soil were analyzed. The internal exposure dose was estimated by considering the exposure from respiration and ingestion of agricultural and livestock products. The maximum individual exposure dose was evaluated to be 1.71% compared to the dose limit. The assumed situation used for accidental scenarios are as follows; A fire inside the facility and falling of radioactive waste drum. It was a fire accident that caused the maximum exposure dose to individual and population living within an 80 km radius of the site. At the outer boundary of the low population zone (LPZ), the maximum effective dose and thyroid equivalent dose were estimated as 8.92 E-06% and 5.29 E-06%, respectively, compared to the dose limit. As a result of evaluating the radiological exposure dose from gaseous emissions, the radioactive waste treatment facilities and its supplementary facilities meet the regulations related to nuclear facility, and are operated safely in terms of radiological environmental impact assessment.
        259.
        2023.11 구독 인증기관·개인회원 무료
        A new annual dose evaluation system called E-DOSE has been developed. The system is based on the methodology of the previous version, K-DOSE60, which uses the dose evaluation methods of the International Commission on Radiological Protection (ICRP-60). However, E-DOSE is coded in ABAP to be compatible with the KHNP’s enterprise resource planning (ERP) system, SAP. This allows E-DOSE to use the real-time data from SAP, which minimizes the need for user intervention. The socio-environmental data, which was previously managed by the staff of each plant sites, can now managed in the system in a centralized manner. This is a significant improvement over the previous system, as it reduces the risk of errors and makes it easier to track and manage data. The system also automatically generates the reports required by regulations. EDOSE is expected to minimize the occurrence of human errors in preparing and managing the input data. This is because the system uses the data from SAP, which is less prone to errors than manually entered data. Additionally, the automatic generation of reports reduces the risk of errors in report preparation. E-DOSE is also expected to improve work efficiency. This is because the system automates many of the tasks involved in annual dose evaluation, such as data entry, calculation, and report generation. Overall, E-DOSE is a significant improvement over the previous annual dose evaluation system. It is more efficient, accurate, and user-friendly.
        260.
        2023.11 구독 인증기관·개인회원 무료
        The radioactive cesium, released from the normal operation or the accidental operation of nuclear facilities, should be regularly monitored for environmental regulatory compliance. The 135Cs/137Cs isotopic ratios, potentially useful for long-term tracking Cs transport in seawater, can be used as a tool of understanding how radionuclides are transported from different nuclear production source terms and distributed in the ocean. The ultra-high sensitive mass spectrometers (TIMS, SF-ICP-MS and TQ-ICP-MS) have been used to measure the 135Cs/137Cs isotopic ratios. However, the radiochemical separation of Cs from the seawater matrix is essential for the analysis of Cs using the mass spectrometers. An automated radiochemical procedure for the separation of Cs in seawater was developed for the analysis of 135Cs/137Cs isotopic ratios using a sequential column chromatography with AMPPAN and AG50Wx8 cation exchange resins. National Instrument’s LabVIEW is a graphical programming language and a powerful tool for the instrument control. A virtual instrument system for the automated separation of cesium isotopes was developed by the state machine of the fundamental design patterns in LabVIEW. In this study, the conceptual designs of an automated separation system of cesium isotopes, its virtual instrument system based on the LabVIEW state machine architectures and an automated radiochemical procedure were described for the purification of cesium isotopes at trace levels found in seawater discharged from the various nuclear facilities.