검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 535

        321.
        2006.04 구독 인증기관·개인회원 무료
        The mechanical properties of ferrous powder metallurgy (P/M) materials are directly related to their microstructure. Ferrous P/M materials with sufficient hardenability will develop microstructures containing significant percentages of martensite in the as-sintered condition. Recently, sinter-hardening has developed into a highly cost effective production method through hardened P/M parts without the need for additional heat-treatments. This paper reviews the advances of sinter-hardening as well as some key processing parameters such as sintering temperature, cooling rate, tempering required to produce high quality sinter-hardened components. Specific topics including effect of alloying elements, alloying methods, and the Characterization and observation of microstructure are discussed.
        322.
        2006.04 구독 인증기관·개인회원 무료
        Direct Metal Laser Sintering (DMLS) has been utilized for prototype manufacturing of functional metal components for years now. During this period the surface quality, mechanical properties, detail resolution and easiness of the process have been improved to the level suitable for direct production of complex metallic components for various applications. The paper will present the latest DMLS technology utilizing EOSINT M270 laser sintering machine and EOSTYLE support generation software for direct and rapid production of complex shaped metallic components for various purposes. The focus of the presentation will be in rapid manufacturing of customized biomedical implants and surgical devices of the latest stainless steel, titanium and cobalt-chromium-molybdenum alloys. In addition to biomedical applications, other application areas where complex metallic parts with stringent requirements are being needed will be presented.
        323.
        2006.04 구독 인증기관·개인회원 무료
        Cellular metals based on Iron have been intensively investigated during the last two decades. Because of the significant decreasing of the structural density of Iron based cellular structures, numerous technologies have been developed for their manufacturing. Besides the tremendous weight reduction a combination with other properties like energy and noise absorption, heat insulation and mechanical damping can be achieved. This contribution will give an overview about the latest state in Iron based cellular materials, including technologies in manufacturing, properties and potential applications.
        335.
        2004.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A substantial number of processes have been suggested as possible contributors to the extragalactic ɤ-ray background (EGRB). Yet another contribution to this background will be emission produced in hadronic interactions of cosmic-ray protons with the cluster thermal gas; this class of cosmic rays (CRs) has been shown to be responsible for the EUV emission in the Coma Cluster of galaxies. In this paper we assume the CRs in the Coma Cluster is prototypic of all clusters and derive the contribution to the EGRB from all clusters over time. We examine two different possibilities for the scaling of the CR flux with cluster size: the number density of the CRs scale with the number density of the thermal plasma, and alternatively, the energy density of the CRs scale with the energy density of the plasma. We find that in all scenarios the EGRB produced by this process is sufficiently low that it will not be observable in comparison with other mechanisms that are likely to produce an EGRB.
        3,000원
        336.
        2004.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Recently, claims have been made of the detection of 'warm-hot' gas in the intergalactic medium. Kaastra et al. (2003) claimed detection of ~ 106K material in the Coma Cluster but studies by Arnaud et al. (2001), and our analysis of the Chandra observations of Coma (Vikhlinin et al. 2001), find no evidence for a 106 K gas in the cluster. Finoguenov et al. (2003) claimed the detection of 3 X 106 gas slightly off-center from the Coma Cluster. However, our analysis of ROSAT data from this region shows no excess in this region. We propose an alternative explanation which resolves all these conflicting reports. A number of studies (e.g. Robertson et al., 2001) have shown that the local interstellar medium undergoes charge exchange with the solar wind. The resulting recombination spectrum shows lines of O VII and O VIII (Wargelin et al. 2004). Robertson & Cravens (2003) have .shown that as much as 25% of the Galactic polar flux is heliospheric recombination radiation and that this component is highly variable. Sporadic heliospheric emission could account for all the claims of detections of 'warm-hot' gas and explain the conflicts cited above.
        3,000원
        337.
        2004.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Similarly to other cluster of galaxies previously classified as cooling flow systems, the Chandra observation of MKW 3s reveals that this object has a complex X-ray structure hosting both a X-ray cavity and a X-ray filament. Unlike the other clusters, however, the temperature map of the core of MKW 3s shows the presence of extended regions of gas heated above the radially averaged gas temperature at any radius. As the cluster does not show evidences for ongoing major mergers Mazzotta et al. suggest a connection between the heated gas and the activity of the central AGN. Nevertheless, due to the lack of high quality radio maps, this interpretation was controversial. In this paper we present the results of two new radio observations of MKW 3s at 1.28 GHz and 604 MHz obtained at the GMRT. Together with the Chandra observation and a separate VLA observation at 327 MHz from Young, we show unequivocal evidences for a close connection between the heated gas region and the AGN activity and we briefly summarize possible implications.
        4,000원
        338.
        2004.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Observations with EUVE, ROSAT, and BeepoSAX have shown that some clusters of galaxies produce intense EUV emission. These findings have produced considerable interest; over 100 papers have been published on this topic in the refereed literature. A notable suggestion as to the source of this radiation is that it is a 'warm' (106 K) intracluster medium which, if present, would constitute the major baryonic component of the universe. A more recent variation of this theme is that this material is 'warm-hot' intergalactic material condensing onto clusters. Alternatively, inverse Compton scattering of low energy cosmic rays against cosmic microwave background photons has been proposed as the source of this emission. Various origins of these particles have been posited, including an old (${\~}$ 수식 이미지Giga year) population of cluster cosmic rays; particles associated with relativistic jets in the cluster; and cascading particles produced by shocks from sub-cluster merging. The observational situation has been quite uncertain with many reports of detections which have been subsequently contradicted by analyses carried out by other groups. Evidence supporting a thermal and a non-thermal origin has been reported. The existing EUV, FUV, and optical data will be briefly reviewed and clarified. Direct observational evidence from a number of different satellites now rules out a thermal origin for this radiation. A new examination of subtle details of the EUV data suggests a new source mechanism: inverse Compton scattered emission from secondary electrons in the cluster. This suggestion will be discussed in the context of the data.
        3,000원