검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,442

        350.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 농촌진흥청 국립원예특작과학원 채소과에서 육성 중인 고추 34계통과 세계채소센터 육성 계통과 자원 12점 등 총 46점의 고추를 공시하여, 종자의 발아율, 수량 및 상품과율, 그리고 화분발아율을 조사하여 내서성이 강한 고추 자원을 선발하기 위하여 수행되었다. 1. 종자발아율 비교에서 여름종자는 가을종자 대비 상대적인 피해율은 4.3~100% 범위였고, H42(1.6%), H16(5.0%), H14(6.3%), H02(12.4%), H44(13.7%), H12(15.9%), H03 (17.6%), H17(23.4%) 순으로 대조 계통인 H37(26.2%)에 비해 피해율이 낮았다. 2. 고추 과실의 수량은 34.4~446.5g, 총 과실수는 2.0~134.3 개를 나타냈다. 상품과 비율에 있어서 75% 이상은 H22(95.0%), H16(89.1%), H37(88.4%), H40(86.4%), H6 (86.0), H27(83.7%), H04(83.6%), H03(82.6%), H08(81.1%), H44(81.4%), H02(80.0%), H45(79.1%), H17(78.7%), H19 (77.7%), H34(77.0%), H15(76.9%), H42(76.3%) 순으로 나타 났다. 3. 고온 처리에 의한 화분발아율의 피해율은 H06(59.5%), H14(74.4%), H44(85.3%), H03(90.2%)가 대조구인 H37 (94.7%)과 나머지 다른 고추에 비해 상대적으로 낮았다. 이상의 결과, 가을종자 대비 여름종자 종자발아율의 피해율, 수량 및 상품과율, 그리고 고온 처리에 의한 화분발아율 등을 고려하여, H03, H04, H06, H14, H17, H22, H44, H45 계 통을 내서성이 높은 자원으로 선발하였다.
        4,000원
        351.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cadmium (Cd) toxicity is a serious limitation for agricultural production. In this study, we explored tolerance mechanism associated with Cd toxicity tolerance in alfalfa plants. We used three distinct alfalfa cultivars M. sativa cv. Vernal, M. sativa cv. Zhung Mu, and M. sativa cv. Xing Jiang Daye in this study. Cd showed declined chlorophyll score in Xing Jiang Daye compared with Zhung Mu and Vernal. No significant change observed among the cultivars for root and shoot length. Atomic absorption spectroscopy analysis demonstrated a significant accumulation of Cd, Fe, S and PC in distinct alfalfa cultivars. However, Zhung Mu and Xing Jiang Daye declined Cd accumulation in root, where Fe, S and PC incremented only in Zhung Mu. It suggests that excess Cd in Zhung Mu possibly inhibited in root by the increased accumulation of Fe, S and PC. This was further confirmed by the response of Fe (MsIRT1) and S transporters (MsSULTR1;2 and MsSULTR1;3), and MsPCS1 genes associated with Fe, S and PC availability and translocation in roots and shoots. It suggests that specially the transcript signal inducing the responses to adjust Cd especially in Zhung Mu. This finding provides the essential background for further molecular breeding program for forage crops.
        4,000원
        352.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of the present study was to determine the best model to describe and quantify the changes in live body weight, height at withers, height at rump, body length and chest girth of Holstein cows raised under Korean feeding conditions for 50 months. The five standard growth models namely polynomial linear regression models, regression of growth variables on the first and second-order of ages in days (model 1) and regression of growth variables on age covariates from first to the third-order (model 2) as well as non-linear models were fitted and evaluated for representing growth pattern of Holstein cows raised in Korean feeding circumstances. Nonlinear models fitted were three exponential growth curve models; Brody, Gompertz, and von Bertalanffy functional models. For this purpose, a total of 22 Holstein cows raised in Korea used in the period from April 2016 to May 2020. Each model fitted to monthly growth curve records of dairy cows by using PROC NLIN procedure in SAS program. On the basis of the results, nonlinear models showed the lower root mean square of error (RMSE) for live body weight, height at withers, height at rump, body length and chest girth (12.22, 1.95, 1.55, 4.04, 2.06) with higher correlation coefficiency (R2) values for live body weight, height at withers, height at rump, body length and chest girth (0.99, 0.99, 0.99, 1.00, 1.00). Overall, the evaluation of the different growth models indicated that the Gompertz model used in the study seemed to be the most appropriate one for standard growth of Holstein cows raised under Korean feeding system.
        4,000원
        353.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Barley is an important cereal gain which is traditionally used in some nations of Asia and North Africa, and there has been growing interest in using barley as an ingredient in food due to their nutritional value and high content of phyto-constituents. However, no study report on comparative feed value between sprouted barley, cornflake and alfalfa hay. Therefore, in this study we aimed to evaluate the chemical composition, amino acid profile and mineral content of 6 day sprouted barley fodder (SBF) compared with cornflake and alfalfa hay using by AOAC method, as an alternative feed ingredient. Results showed that SBF had higher content of crude protein, acid detergent insoluble crude proteins and neutral detergent insoluble crude protein than alfalfa hay and cornflake; cornflake had higher crude fiber, neutral detergent fiber content than SBF and alfalfa hay; alfalfa hay had higher crude fiber, crude ash, acid detergent fiber, neutral detergent fiber and lignin level than SBF and cornflake. Also, significant differences were found on amino acid content among them (p<0.01). The most abundant amino acid in SBF was glutamate (123 g/kg DM), which is higher than in alfalfa hay (1.27%) or cornflake (1.58%). However, methionine (1.33%) and cysteine (1.53%) were the least abundant amino acids in SBF compared with cornflake or alfalfa hay. Furthermore, our study results exhibited that SBE comprise a good sources of minerals including ferrous (90.01 mg/kg) followed by zinc (20.50 mg/kg), magnesium (0.20 mg/kg) and sodium (0.03 mg/kg) as compared to cornflake and alfalfa hay. The present research findings, confirmed that the nutritional values of SBF are comparable to those of cornflake and alfalfa hay. Hence, SBF can be a better alternative feed ingredient for cornflake or alfalfa hay. However, feeding trials will be required to determine acceptability of SBF for ruminant production.
        4,000원
        356.
        2020.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this paper, AgCl/Ag3PO4/diatomite photocatalyst is successfully synthesized by microemulsion method and anion in situ substitution method. X-ray diffraction (XRD), photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and ultraviolet-visible spectroscopy (UV-Vis) are used to study the structural and physicochemical characteristics of the AgCl/Ag3PO4/diatomite composite. Using rhodamine B (RhB) as a simulated pollutant, the photocatalytic activity and stability of the AgCl/Ag3PO4/diatomite composite under visible light are evaluated. In the AgCl/Ag3PO4/diatomite visible light system, RhB is nearly 100 % degraded within 15 minutes. And, after five cycles of operation, the photocatalytic activity of AgCl/Ag3PO4/diatomite remains at 95 % of the original level, much higher than that of pure Ag3PO4 (40 %). In addition, the mechanism of enhanced catalytic performance is discussed. The high photocatalytic performance of AgCl/Ag3PO4/diatomite composites can be attributed to the synergistic effect of Ag3PO4, diatomite and AgCl nanoparticles. Free radical trapping experiments are used to show that holes and oxygen are the main active species. This material can quickly react with dye molecules adsorbed on the surface of diatomite to degrade RhB dye to CO2 and H2O. Even more remarkably, AgCl/Ag3PO4/diatomite can maintain above 95 % photo-degradation activity after five cycles.
        4,000원