This article presents the successful consolidation of the mixed Co and Diamond powders for a drilling segment by the combined application of magnetic pulsed compaction (MPC) and subsequent sintering, and their properties were analyzed. Homogeneous hardness (Hv 220) and density (97%) of sintered bulks fabricated by MPC were obtained by the new technique, where higher pressure has been employed for short period of time than that of general process. A fine microstructure and homogeneous hardness in the consolidated bulk were observed without cracks. Relatively higher drilling speed of 9.61 cm/min and life time of 6.55 m were found to the MPCed specimens, whereas the value of the specimens fabricated by general process was 11.71 cm/min and 7.96 m, respectively. A substantial improvement of mechanical properties of segment was achieved through this study.
The effects of the dopant (Mn) ratio on the microstructure and thermoelectric properties of alloy were studied in this research. The alloy was fabricated by a combination process of ball milling and high pressure pressing. Structural behavior of the sintered bulks were systematically investigated by XRD, SEM, and optical microscopy. With increasing dopan (Mn) ratio, the density and phase of the sintered bulks increased and maximum density of 94% was obtained in the 0.07% Mn-doped alloy. The sintered bulks showed fine microstructure of , and phase. The semiconducting phase of was transformed from phase by annealing
In this research, fine-structure TiO2 bulks were fabricated in a combined application of magnetic pulsed compaction (MPC) and subsequent sintering and their densification behavior was investigated. The obtained density of TiO2 bulk prepared via the combined processes increased as the MPC pressure increased from 0.3 to 0.7 GPa. Relatively higher density (88%) in the MPCed specimen at 0.7 GPa was attributed to the decrease of the inter-particle distance of the pre-compacted component. High pressure and rapid compaction using magnetic pulsed compaction reduced the shrinkage rate (about 10% in this case) of the sintered bulks compared to general processing (about 20%). The mixing conditions of PVA, water, and TiO2 nano powder for the compaction of TiO2 nano powder did not affect the density and shrinkage of the sintered bulks due to the high pressure of the MPC.
This article presents the challenges toward the successful consolidation of nanopowder using magnetic pulsed compaction (MPC). In this research the ultrafine-structured bulks have been fabricated by the combined application of magnetic pulsed compaction (MPC) and subsequent sintering, and their properties were investigated. The obtained density of bulk prepared by the combined processes was increased with increasing MPC pressure from 0.5 to 1.25 GPa. Relatively higher hardness and fracture toughness in the MPCed specimen at 1.25 GPa were attributed to the retention of the nanostructure in the consolidated bulk without cracks. The higher fracture toughness could be attributed to the crack deflection by homogeneous distribution and the retention of nanostructure, regardless of the presence of porosities. In addition, the as consolidated bulk using magnetic pulsed compaction showed enhanced breakdown voltage.
In this study, the bottom-up powder metallurgy and the top-down severe plastic deformation (SPD) techniques for manufacturing bulk nanomaterials were combined in order to achieve both full density and grain refinement without grain growth of rapidly solidified Al-20 wt% Si alloy powders during consolidation processing. Continuous equal channel multi-angular processing (C-ECMAP) was proposed to improve low productivity of conventional ECAP, one of the most promising method in SPD. As a powder consolidation method, C-ECMAP was employed. A wide range of experimental studies were carried out for characterizing mechanical properties and microstructures of the ECMAP processed materials. It was found that effective properties of high strength and full density maintaining nanoscale microstructure are achieved. The proposed SPD processing of powder materials can be a good method to achieve fully density and nanostructured materials.
In this study the nanostructured ceramics have been fabricated by the combined application of magnetic pulsed compaction (MPC) and subsequent spark plasma sintering (SPS), and their density and hardness properties were investigated. The prepared by the combined processes showed an increase by in density, approaching the value close to the true density, and an enhancement by in hardness, compared to those fabricated by MPC or static compaction method followed by sintering treatment.
In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve both full density and grain refinement of Al-20 wt% Si powders without grain growth, which was considered as a bottle neck of the bottom-up method using the conventional powder metallurgy of compaction and sintering. ECAP (Equal channel angular pressing), one of the most promising method in SPD, was used for the powder consolidation. The powder ECAP processing with 1, 2, 4 and 8 passes was conducted for 10 and 20 It was found by microhardness, compression tests and micro-structure characterization that high mechanical strength could be achieved effectively as a result of the well bonded powder contact surface during ECAP process. The SPD processing of powders is a viable method to achieve both fully density and nanostructured materials.
In this paper processing and mechanical properties of Al-20 wt% Si alloy was studied. A bulk form of Al-20Si alloy was prepared by gas atomizing powders having the powder size of 106-145 and powder extrusion. The powder extrudate was subsequently equal channel angular pressed up to 8 passes in order to refine grain and Si particle. The microstructure of the gas atomized powders, powder extrudates and equal channel angular pressed samples were investigated using a scanning electron microscope and X-ray diffraction. The mechanical properties of the bulk sample were measured by compressive tests and a micro Victors hardness test. Equal channel angular pressing was found to be effective in matrix grain and Si particle refinement, which enhanced the strength and hardness of the Al-2OSi alloy without deteriorating ductility in the range of experimental strain of 30%.
The effect of extrusion temperature on the microstructure and mechanical properties were studied in He-gas atomized alloy powders and their extruded bars using SEM, tensile testing and thermal expansion testing. The extruded bar of alloy consists of a mixed structure in which fine Si particles with a particle size below 20∼500nm and very fine compounds with a particle size below 200nm are homogeneously dispersed in Al martix with a grain size below 500nm. With increasing extrusion temperature, the microstructural scale was decreased. The ultimate tensile strength of the alloy bars has incresed with decreasing extrusion temperature from 500 to 35 and alloy extreded at 35 shows a highest tensile strength of 810 MPa due to the fine namostructure. The addition of Ni and Ce decreased the coefficients of thermal expansion and the effects of extression temperature on the thermal expansion were not significant.
In order to produce good wear resistance powder metallurgy Al-Si alloys with high strength, addition of glass forming elements of Ni and Ce in Si alloy was examined using SEM, TEM, tensile strength and wear testing. The solubility of Si in aluminum increased with increasing Ni and Ce contents for rapidly solidified powders. These bulk alloys consist of a mixed structure in which fine Si particles with a particle size below 500 nm and very fine A1Ni, A1Ce compounds with a particle size below 200 nm are homogeneously dispersed in aluminum matrix with a grain size below 600 nm. The tensile strength at room temperature for Si, SiNiCe, and SiNiCe bulk alloys extruded at 674 K and ratio of 10 : 1 is 281,521, and 668 ㎫ respectively. Especially, SiNiCe bulk alloy had a high tensile strength of 730 ㎫. These bulk alloys are good wear-resistance bel ter than commercial I/M 390-T6. Specially, attactability for counterpart is very little, about 15 times less than that of the I/M 390-T6. The structural refinement by adding glass forming elements such as Ni and Ce to hyper eutectic Si alloy is concluded to be effective as a structural modification method.d.tion method.d.
The effect of extrusion temperature on the microstructure and mechanical properties was studied in gas atomized TEX>Al81Si19 alloy powders and their extruded bars using SEM, tensile testing and wear testing. The Si particle size of He-gas atomized powder was about 200-800 nm. Each microstructure of the extruded bars with extrusion temperature (400, 450 and 50) showed a homogeneous distribution of primary Si and eutectic Si particles embedded in the Al matrix and the particle size varied from 0.1 to 5.5 . With increasing extrusion temperature from 40 to 50, the ultimate tensile strength (UTS) decreased from 282 to 236 ㎫ at 300 K and the specific wear increased at all sliding speeds due to the coarse microstructure. The fracture behavior of failure in tension testing and wear testing was also studied. The UTS of extrudate at 40 higher than that of 50 because more fine Si particles in Al matrix of extrudate at 40 prevented crack to propagate.
Al-l4wt.%Ni-l4wt.% Mm(Mm=misch metal) alloy powders rapidly solidified by the gas atomization method were subjected to mechanical milling(MM). The morphology, microstructure and hardness of the powders were investigated as a function of milling time using scanning electron microscopy(SEM), transmission electron microscopy(TEM) and Vickers microhardness tester. Microstructural evolution in gas-atomized Al-l4wt.%Ni-l4wt.% Mm(Mm=misch metal) alloy powders was studied during mechanical milling. It was noted that the as-solidified particle size of decreases during the first 48 hours and then increases up to 72 hours of milling due to cold bonding and subsequently there was continuous refinement to on milling to 200 hours. Two microstructurally different zones, Zone A, which is fine microstructure area and Zone B, which has the structure of the as-solidified powder, were observed. The average thickness of the Zone A layer increased from about 10 to in the powder milled for 24 hours. Increasing the milling time to 72 hours resulted in the formation of a thicker and more uniform Zone A layer, whose thickness increased to about . The TEM micrograph of ball milled powder for 200 hours shows formation of nano-particles, less than 20 nm in size, embedded in an Al matrix.
Bi-Te게 열전재료는 200~400K 정도의 저온에서 에너지 변환 효율이 가장 높은 재료로써 열전냉각, 발전재료 등에 응용하기 위하여 제조방법 및 특성에 관한 많은 역구가 진행되어 왔다. 현재 산업화에 응용되고 있는 일방향응고법은 기계적 강도가 약하여 회수 율이 낮으며, 결정을 성장시키는데 비교적 장시간을 필요로 하기 때문에 제조 단가가 비싸다. 따라서 이와 같은 문제점을 보완하기 위하여 합금설계 및 가공공정에 대한 연구가 활발히 진행되고 있다. 이에
This paper reports the results of an investigation into the effect of Cu additions upon the nano-crystallization behaviour of an Al-Y-Ni alloy. 1 at.% Cu was added to a base alloy of Al/sub 88/Y₄Ni/sub 8/ either by substitution for Al to form Al/sub 87/Y₄Ni/sub 8/Cu₁, or by substitution for Ni to form Al/sub 88/Y₄Ni/sub 7/Cu₁. Consistent with previous findings in the literature, the substitution of Cu for Al was found to increase the thermal stability of the amorphous phase whereas the substitution of Cu for Ni was found to decrease its thermal stability. Comparing the microstructures of these alloys after heat treatment to produce equivalent volume fractions of Al nanocrystals showed average grain sizes of 14 nm, 12 nm and 9 nm for the alloys Al/sub 88/Y₄Ni/sub 8/, Al/sub 87/Y₄Ni/sub 8/Cu₁respectively. The effect of Cu in refining the size of the nanocrystals was attributed to enhanced nucleation increasing the number density of the nanocrystals, rather than diffusion limited or interface limited growth.
계 열전재료는 200~400K 정도의 저온에서 네어지 변환효율이 가장 높은 재료로써 열전냉각, 바런재로 등에 응요하기 위하여ㅠ 제조법 및 특서에 관한 많은 연구가 진행되어 왔다. 계 화합물은 rhombohedral의 결정 구조를 가지는 층상 화 ;물로 결정대칭성으로 인해 연전기적으로 큰 이방성을 나타낸다. 현재는 일반향용고법에 의해서 입자를 a축 방향으로 성장시켜 큰 결정립을 가진 다결정재료를 사용하고 있으나, c면이 매우 취약하기 때문에 가공서이 나쁘
열전재료는 열전현상을 가지고 있어 열전발전과 열선냉각이 가능하기 때분에 해저용, 우주용, 군사용의 특수 전원으로 이미 실용화되어있고, 반도체, 레이저 다이오드, 적외선 검출소자 등의 냉각기로 쓰여지고 있어 많은 연구자들이 이들 재료에 대한 연구에 관을 갖고 열전특성을 향상시키기 위하여 많은 연구를 진행하고 있다 이들 열전재료는 사용 온도구역에 따라 3종류로 구분하고 있으며, 실온부근의 저온 영역(20)이하에서는 계 재료, 중온영역(20~50)에서sms
계 열전반도체 재료는 200 ~ 400K 정도의 저온에서 에너지 변환 효율이 가장 높은 재료로서 열전냉각 및 발전재료로 제조볍 및 특성에 관한 많은 연구가 진행되어 왔다. 전자냉각 모듈의 제조에는 P형 및 N형 계 단결정이 주로 사용되고 있으나. 단결정은 C축에 수직한 벽개면을 따라 균열이 쉽게 전파하기 때문에 소자 가공사 수윤 저하가 가장 큰 문제점으로 지적되고 있다. 이에 따라 최근 열전재료의 가공방법에 따른 회수율 증가 및 열전특성 향상에 관한