검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,286

        465.
        2018.05 구독 인증기관·개인회원 무료
        As the demand of fossil fuel has been increased, meeting future will be faced with exhausted non-renewable energy generation. In addition, there is a lot of expectation that fossil fuel resources are expected to get depleted in the end of century. Piezoelectric energy harvesting technology has significant advantages over other renewable energy sources such as solar panel, wind and geothermal energy. By using the pressure of vehicles, the piezoelectric energy transforms to electric energy by deformation of paving materials. There are many studies about this theme, only a few researches have been conducted on-site. It means that piezoelectric harvester is not available for roadway. Therefore, it is necessary to make it better a research framework that is available technology of piezoelectric materials and paving materials. The piezoelectric generator is tested before piezoelectric harvester manufacture for roadway. Each piezoelectric generator produces 9.38[mW/cm²] and piezoelectric harvester is manufactured by the number of 85 the piezoelectric generator. This harvester size has 50*20*9cm3 which is considered for wheel path of vehicle. When the chosen vehicle (about 2 ton) pass this harvester, the amount of electric energy is 255[W/m²] under 2[mm] of deformation and 30[km/h] of velocity. In this situation, the gathered energy is multiplied the maximum of voltage and electric current then divide it for the area of harvester. The test result is the temperature difference between the inside and outside after the thermal insulation coating process. When the external surface temperature is increased to 180 degrees, the internal temperature is kept 80 degrees even after about 30 minutes, indicating that the internal materials are protected from heat. In spite of many advantages with piezoelectric harvesting system, it is very hard to fit between roadway and harvester because of pavement damage. Most of paving material has a strong thickness. In this study, instead of asphalt and concrete pavement, the paving material is compound of poly-urethane to protect rutting and damage. To analysis for behavior, test is conducted by 90,000 times of wheel load on the pavement. The red line on the graph is commonly used asphalt pavement and the green one is polyurethane pavement. As it seemed that polyurethane pavement shows that the depth from wheel load is over 5 times better performance compared with asphalt pavement. Construction design is first of all, cutting off asphalt which is established before, then set up the tenth of piezoelectric harvesters, twenty fourth of road markers is installed into the roadway. Before filling up to space with polyurethane materials, wire arrangement and connect to controller. Each harvester is connected with controller that makes a signal for voltage, temperature sensor, water leak sensor. In order to use electric energy by harvester, road markers are selected, which each harvester has three of road markers. A circuit for lighting the light emitting device using the output of the harvester installed in the rest area was designed and manufactured. Basically, a circuit is configured to light up the harvester output, and a commercial power supply can be used in case the output of the harvester is reduced due to the durability thereof, and a controller is manufactured for each harvester to connect the road markers. Key Words: Piezoelectric Harvester
        466.
        2018.05 구독 인증기관·개인회원 무료
        To be better fit for highways, pavement systems are required to provide comfortable and safe driving and be structurally durable. Composite pavements can be an effective option as they are more durable by placing a high functional asphalt overlay on a rigid concrete base layer. In order to apply a composite pavement system to the field, it is necessary not only to develop technologies that prevent reflecting crack and deterioration of the base layer, but also to improve bonding performance of materials and ensure structural performance as a pavement system against traffic loading. In advanced countries like Japan, USA and Europe, high-functional composite pavement systems are being put into practice across new highway networks. In this study, we evaluated structural performance (rutting, reflecting crack, and deflection) by applying traffic loads of actual highways through an accelerated pavement tester (APT) of a composite pavement section made up of a quiet porous surface laid over a water-proofing layer, a continuously reinforced concrete base, and a lean concrete sub-base layer, which was developed with new pavement methods used for each layer prior to field application. The APT specimen was constructed with paving materials and equipment actually used on site in the same dimensions (W3.5m*L14m*H2m) as actual highway sections in Korea, and 3-axle double-wheel heavy load (45ton) cart type KALES(Korean Accelerated Loading and Environmental Simulator) traveling on the specimen in both directions was used to simulate traffic loading. After applying around 8,574,000 ESALs of traffic loads, no reflecting crack occurred on the asphalt surface of the composite pavement, without surface distress except for rutting. In order to examine what causes rutting of pavements, we surveyed thickness of pavements by layer and measured asphalt density.
        467.
        2018.05 구독 인증기관·개인회원 무료
        Roller Compacted Concrete Pavement (RCCP) is placed by roller compaction of a mixture of less cement and unit water content and more aggregates and provides excellent early strength development with the help of interlocking of aggregates and hydration. The unit cement content of RCC pavements accounts for 85% of conventional pavements, with low drying shrinkage. As low drying shrinkage leads to smaller crack widths than ordinary concrete, RCC pavements can help elevate reflecting crack resistance if applied to a base layer of a composite pavement system. In a composite pavement with an asphalt surface laid over a concrete base, pavement temperature change is important in predicting pavement performance. As movement of the lower concrete layer is determined by temperature depending on pavement depth, temperature data of the pavement structure serves as an important parameter to prevent and control reflecting crack. Among the causes of reflecting crack, horizontal behavior of the lower concrete layer and curling-caused vertical behavior of joints/cracks are considered closely related to temperature change characteristics of the lower concrete course (Baek, 2010). Previous studies at home and abroad about reflecting crack have focused on pavement behavior depending on daily and yearly in-service temperature changes of a composite pavement (Manuel, 2005). Until now, however, studies have not been conducted on initial temperature characteristics of concrete in composite pavements where asphalt surface is placed over an RCC base. Annual temperature changes of in-service concrete pavements go up to 60 ℃, and those of asphalt overlays become around the twice at 110 ℃. This study evaluated initial crack behavior of composite pavement by investigating pavement temperature by depth of an RCC base and analyzing joint movement depending on change to temperatures of continuously jointed pavements. Findings from the study suggest that in composite pavements and asphalt overlays, time of laying asphalt has an important impact on crack behavior and reflecting crack.
        468.
        2018.05 구독 인증기관·개인회원 무료
        Roller Compacted Concrete Pavement (RCCP) is a pavement placed and compacted using an asphalt paver and a compaction roller by applying a small amount of concrete mixture and shows excellent structural performance as a result of hydration reaction of cement and interlocking of aggregates by roller compaction. It also provides economic advantages over conventional concrete pavements by reducing unit cement content and construction period, simplifying construction process, and decreasing traffic closure time (Wayne, 2006). However, given that it tends to show lower IRI levels than common concrete pavements since its low unit water content and binder weight ratios make uniform quality control difficult and roller compaction after paving makes the surface irregular and rough, with rough profile at the bottom of the pavement being reflected on the surface, RCCP is used mainly in port and industrial roads for low speed (60km/h or less) traffic (Dale Harringtion, 2010; Gregory, 2009). In order to apply RCCP to high-speed roadways, diamond grinding (DG) or asphalt overlay that is highly effective in improving roughness is needed (Fares Abdo, 2014; Gregory, 2009). Applying DG over RCCP leads to excellent skid resistance and noise reduction effects as a great percentage of aggregates makes the pavement surface rough, enhancing durability of concrete and the life of DG functionality. In addition, RCCP can be used as a high performance base layer of composite pavements, as it can reduce reflecting cracking at joints and cracked sections thanks to early strength development and low drying shrinkage of concrete. In this study, we assessed longitudinal roughness improvement effects by roughness-affecting factor by applying DG methods and asphalt overlays to three RCCP sites with a variety of sub-structural conditions and analyzed the effects on roughness of existing RCC pavements depending on surfacing method (DG, APOverlay).
        469.
        2018.05 구독 인증기관·개인회원 무료
        In recent years, pavement distresses have been caused by diverse factors such as spalling, deterioration of repaired sections, blow-up, and alkali aggregate reaction due to changing climate environment of a concrete pavement and its construction and maintenance conditions (supply of materials, increase in use of de-icers, etc,). As a leading repair method for deteriorated concrete pavements, partial-depth repair is implemented in accordance with guidelines of material properties for joints of a concrete pavement and field application evaluation systems, but still some of the repaired sections become deteriorated again at an early stage due to poor construction quality and failure of response to environmental impacts. Distresses that can be corrected with partial-depth repairs are largely divided into those of repair materials and of the existing pavement bonded to repair materials, and combined distress of repair materials and the existing pavement. Although re-repair methods should be different by distress type and scale than conventional pavement repair methods, appropriate repair methods and guidance for re-repairs have not been in place so far, and therefore currently, re-repair practices follow the existing manual of partial depth repairs. Therefore, this study evaluated concrete bond characteristics by removing method and repair scope for an experimental section of frequently distressed pavements to determine a re-repair scope and method for deteriorated partial depth repair sections of concrete pavement, the number of which has increased over time.
        470.
        2018.05 구독 인증기관·개인회원 무료
        The composition of the deicer sprayed on the highway is spreading over the highway by the scattering or snow removal activity, or car movement and consequently affecting the vegetation environment around the highway. These are the cause of the damage of fruit trees and crops, and also the cause of corrosion of highway structures. The goal of this study is to estimate the detected range of deicer components from a highway. The concentration of the deicer components in gauze and soil were investigated according to the crossing distance from the highway. The data collected were then used to estimate the concentration range of deicer components in a rage of distance up to 100 m from the highway where the deicer was spread. The sample time and weight of gauze were measured before and after installation, and the soil was collected at more than three points in parallel with the highway at the gauze installation point. The components in gauze and soil were investigated in addition to the deicer components (Ca2+, Na+, Cl-) as well as Mg2+ and K+. As Ca2+ and Cl- components of deicer were affected by agricultural use, Na+ component was selected as a tracer and further SAR (Sodium Adsorption Ratio) of soil was analyzed to examine the degree of influence on vegetation indirectly. The gauze concentration was evaluated by the concentration of the deicer ingredient at the background concentration of the blank gauze. The total amount of the deicer sprayed in the study road for 4 months (winter season) was about 93 ton/km. In the gauze test, the spread of the deicer was detected at a distance of 100 m in study area, but the concentration of the deicer in the gauze by distance decreased rapidly within 10 m from the highway. And concentration of the deicer components in gauze and soil came down after rainy season (August ~ Sep.). The results showed that the components of the deicer could be spread widely by the wind. The effective range of the deicer on vegetation based on SAR in soil was estimated to be less than 20 m from the highway. This study examines the concentration changes of the deicer components in gauze and soils and shows that deicer components sprayed on the highway are accumulated and moved over time by wind, snow removal, terrain, water system and land use around the highway.
        471.
        2018.05 구독 인증기관·개인회원 무료
        The objective of this study was to evaluate the effectiveness of various crack inducers to be used in the advanced reinforced concrete pavement (ARCP) by conducting yard tests. Some of cracks are induced in ARCP to reduce the stresses in steel bars and to form more uniformly spaced cracks so that the required steel bar amount can be decreased and at the same time the pavement performance can be improved. In this study, an experimental ARCP was constructed for the length of 22.4 m, width of 1.12 m, and thickness of 0.26 m. The anchor lugs were placed at both ends of ARCP to pretend continuities of the system. 8 crack inducers with a uniform spacing of 2.8 m were installed in different manners when placing concrete, so the test length of the experimental ARCP was 19.6 m. The variables of crack inducers included the shape, material, installed depth, and installing method. The basic shape of the crack inducer represented a round face and a flat opposite face with a height of 50 mm and a width of 10 mm. The slightly different shaped crack inducers were installed for inducing cracks at both ends of ARCP. The crack inducers were primarily made of glass fiber reinforced plastic (GFRP) but a crack was induced using a polyethylene sheet inducer. The installed depths of the crack inducers were 30, 40 and 70 mm to the top of the crack inducer from the pavement surface. Most crack inducers were preinstalled on the transverse steel bar locations before concrete pouring, but 2 crack inducers were installed just after concrete placement when concrete was still fresh. The temperature measurement sensors of i-Buttons and thermocouples were installed at the top, middle and bottom of slab to measure the temperature variations of slab. The displacement transducers were also installed at the crack locations to measure the crack width movements. The experimental results showed that the cracks were induced at all the locations where the crack inducers were placed. In addition to the induced cracks, just one crack was formed naturally. The crack patterns on the surface of pavement were all comparable. The crack width measurement data showed that there were slight differences in the crack width movements among the cracks but all the cracks including both the induced and naturally formed cracks moved little within a 0.1 mm range. Therefore, any type of the crack inducers employed in this study can be used to initiate cracks in ARCP.
        472.
        2018.05 구독 인증기관·개인회원 무료
        Composite pavements are constructed by placing a high functional asphalt surface layer on a high performance concrete rigid base layer and provide a more durable, high functional surface to road users. Service life of composite pavements is dependent on the bonding performance of the lower rigid base and the flexible surface layer. Accordingly, it is necessary to place an impermeability layer between the functional surface layer and the rigid base to enhance bonding performance and to prevent moisture penetration into the rigid base and deterioration of pavement. In order to use optimal composite pavement sections, two types were applied to impermeability layer: highly impermeable water-tight SMA and mastic asphalt currently in use. APT (Accelerated Pavement Testing) and experimental construction were carried out to evaluate bond strengths between the rigid base and the impermeability layer depending on the type of impermeability layers. Composite pavement sections for the APT had a 22 cm concrete rigid base layer and a 5cm functional surface, as well as either 5cm of SMA impermeability layer and 5cm of mastic layer. After applying around 8,574,000 ESALs, pull-off test was conducted, which showed that the mastic section outperformed the SMA section. In the experimental construction, three types of rigid base layers, JCP (Jointed Concrete Pavement), CRCP (Continuously Reinforced Concrete Pavement), and RCCP (Roller Compacted Concrete Pavement), were used for composite pavement sections, and as in the APT, two types of impermeability layers, SMA and mastic, were used per rigid base layer of new and deteriorated concrete pavement. Therefore, seven composite pavement sections in total were constructed. We measured the bond strength over one year or so following the construction of these composite pavement sections and found that regardless of the type of rigid base layer and whether it was new or not, those sections with a mastic impermeability layer had high bond strengths.
        473.
        2018.05 구독 인증기관·개인회원 무료
        In Korea, concrete pavements were first applied to highways in 1981 and as a result of continued increase in length over the past years, 2,592 km of concrete pavement network is currently in service, of which 1,399 km(54%) of concrete pavements is 10 years or older, and 233km(9%) is 20 years or older. The length of concrete pavement sections nationwide has been steadily on the rise every year (EXTRI, 2017). Approximately 54% of current concrete pavement highway network will reach the service life limit in 2025 which means around 660 billion won is needed for future pavement repair project (EXTRI, 2017). Given that concrete pavements beyond design life still have a remaining service life, it is economically advantageous to repair them before reconstruction. Asphalt overlays are a major repair method for older concrete pavements. Depending on the concrete pavement condition, thickness and mixture of asphalt overlays are determined. Service life of asphalt overlays varies by the presence, time and size of cracks in existing concrete pavements and reflecting crack at joints. Temperature change of concrete pavement is among the major reaction parameters of reflecting crack. Reflecting crack develops when asphalt bottom-up cracking by longitudinal shrinkage and expansion due to temperature change of the concrete base layer, top-down cracking by temperature difference between top and bottom of concrete, and shear stress by traffic loading are combined (Baek, 2010). Crack and joint behaviors of concrete pavement vary between the base layer and the concrete surface of composite pavement system, and different conductivity by mixture and thickness of asphalt overlay leads to temperature change of concrete base course. This study measured temperatures of each layer of diverse composite pavements in place on site and analyzed differences in temperature change of concrete base layer depending on mixture and thickness of asphalt overlays. Overlay thickness parameters were 5cm and 10cm, two values most widely used, while mixture parameters were SMA and porous asphalt. Based on temperature change of concrete surface, this study also evaluated the difference of temperature change in concrete base layer with an asphalt overlay on top. Findings from this study are expected to be utilized for studies on mechanism and modeling of reflecting crack in old concrete pavements with asphalt overlays.
        474.
        2018.05 구독 인증기관·개인회원 무료
        Roller-compacted concrete (RCC) has been widely used for construction of pavements [1]. The strength of RCCP can be obtained from not only hydration of binder but also the aggregate interlock resulted from roller-compaction [2]. For this reason, RCCP normally achieves higher strength compared to conventional concrete pavement with similar cement content. Even though RCCP can be provided a good structural performance, it has been difficult to verify the long-term performance though actual field construction. Therefore, this study aimed to investigate the fatigue characteristics and crack development in RCCP based on full-scale fatigue test and accelerated pavement test. In case of full-scale fatigue tests, fatigue behavior was evaluated by using 1 m × 1 m dimensional RCC slab specimens obtained from the field in order to consider the field variability. Fatigue equation derived from this study shows that the number of load repetitions which causes fatigue failure at the same stress level is slightly larger than that of PCA fatigue equation. In order to evaluate the performance of RCCP, two phases of accelerated pavement test (APT) were conducted. In phase one, the performance of RCCP at two different strengths (35.6 and 30.4 MPa) was evaluated. In phase two, the performance of RCCP with different thickness (5, 7.5 and 10 cm) was investigated. The number of load repetition of fatigue crack occurrence in each section was compared to the estimated fatigue failure determined from fatigue equation of RCCP. The crack development in each section was compared to the AASHTO crack model for JPCP. Overall, it was confirmed that RCCP has equal or better performance compared to JPCP the estimation in term of fatigue cracking. The fatigue equation from PCA and cracking model from AAHTO can be used on RCCP at certain design thickness range.
        475.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        작물의 생산량은 광합성과 밀접한 관계가 있으며, 광합성 속도는 다양한 환경 요인에 의해 변화한다. 광합성 속도는 작물의 생육 상태나 생육 속도를 판단하는 지표로 사용되며, 작물 재배 시설을 구축하는 데 고 려해야 하는 중요한 요인이다. 이 연구의 목적은 광도, CO2 농도 및 생육 단계에 의해 변화하는 로메인 상추 의 군락 광합성 속도 모델을 개발하는 것이다. 군락 광합성 속도는 정식 후 5, 10, 15, 20 일차에서 5단계의 CO2 농도(600-2,200μmol·mol-1)와 5단계의 광조건(60-340μmol·m-2·s-1)이 처리된 3개의 밀폐 아크릴 챔버(1.0 × 0.8 × 0.5m) 내에서 측정하였다. 먼저 세 가지 환경 요인을 사용하는 식들을 곱하여 만든 단순곱모델을 구성 하였다. 이와 동시에 생육 시기에 따라 변화하는 광화학 이용효율과 카르복실화 컨덕턴스, 호흡에 의한 이산화탄소 발생 속도를 포함하는 수정 직각쌍곡선 모델을 구성하여 단순곱 모델과 비교하였다. 검증 결과, 단순곱 모델의 R2는 0.923이었으며, 수정 직각쌍곡선 모델의 R2는 0.941을 나타내었다. 따라서 수정 직각쌍곡선 모델 이 광도, CO2 농도, 생육 단계의 3 변수에 따른 군락 광합성 속도를 표현하는 데 더욱 적합한 것으로 판단하 였다. 본 연구에서 개발된 군락 광합성 모델은 식물공장에서 상추 재배를 위해 생육 단계별로 설정해야 할 최 적의 광도와 CO2 농도를 결정하는데 도움이 될 것으로 생각된다.
        4,000원
        478.
        2018.04 구독 인증기관·개인회원 무료
        This study was conducted to evaluate the the efficacy of mulberry cake mixed diet on larval growth of Protaetia brevitarsis. As a result of adding 3, 5, and 10% mulberry cake to the fermented mulberry sawdust, the development period of the Protaetia brevitarsis larvae was 44.9days, 44.6days, and 41.8days, and the highest weight of larvae was 2.76g, 2.80g, and 2.89g, respectively. As a result of adding 3, 5, and 10% mulberry cake to the fermented oak sawdust, the development period of the Protaetia brevitarsis larvae was 46.7days, 41.6days, and 41.7days, and the highest weight of larvae was 2.65g, 2.65g, and 2.56g, respectively.
        479.
        2018.04 구독 인증기관·개인회원 무료
        The mulberry for production of mulberry fruit, found the damage and quantity according to the level of damage by the A. mori, and through regression analysis, we set up a economic injury level. The level of damage by A. mori was to be artificially adjusted, for 2 percent, 5%, 8 percent, and 11 percent of leaf damage. Investigate, From May 31 to June 14, they compared the damage to each damage level and the growth and development and quantity. The survey found that the more damage level, the more severe the damage. The ratio of damage fruit was 5.1 percent, 11 percent, 13.2 percent, 23.9 percent, respectively. And the quantity was reduced by about 33% from 11 percent to 2,387 g/tree compared to the 2 percent to 3,557 g/tree. There's no difference in the damage caused by the sclerotium disease, and the growth and development, such as the length of the tree, the length of the branches, and the thickness of branches. The relationship between the damage level and the ratio of damage fruit was able to obtain relations with the linear regression, Y = 2.129552 X +0.569663(R2 = 0.98). It's the result of an analysis, which analyzed the damage level's relationship with the ratio of damage fruit have a high correlation rate. Therefore, It’s about the ratio of the quantity losses is 5 percent, the ratio of damage leaf is 2.08 percent. If the ratio of damage leaf is more than 2.08 percent, the damage will be required the control. It is judged.
        480.
        2018.04 구독 인증기관·개인회원 무료
        The citrus flatid planthopper Metcalfa pruinosa, a invasive species causes serious damages to field crops, including sweet persimmon, soybean, maize, especially ginseng (Panax ginseng C.A meyer). We selected six chemical pesticides and one environmental friendly pesticide made from the mixture of derris extracts, citronella oils, and cinnamon extracts in laboratory. These pesticides showed over 90% of control effect in open ginseng field. This study was carried out with the support of the cooperative research program for RDA (project No. PJ0124992018), Republic of Korea.