About 10 percent of quasars are known to exhibit deep broad absorption troughs blueward of prominent permitted emission lines, which are usually attributed to the existence of outflows slightly above he accretion disk around the supermassive black hole. Typical widths up to 0.2c of these absorption roughs indicate the velocity scales in which special relativistic effects may not be negligible. Under he assumption of the ubiquity of the broad absorption line region in quasars, the broad emission line flux will exhibit Thomson scattered components from these fast outflows. In this paper, we provide our Monte Carlo calculation of linear polarization of singly Thomson scattered line radiation with the careful considerations of special relativistic effects. The scattering region is approximated by a collection of rings that are moving outward with speeds υ =cβ < 0.2c near the equatorial plane, and the scattered line photons are collected according to its direction and wavelength in the observer's rest frame. We find that the significantly extended red tail appears in the scattered radiation. We also find that the linear degree of polarization of singly Thomson scattered line radiation is wavelength-dependent and hat there are significant differences in the linear degree of polarization from that computed from classical physics in the far red tail. We propose that the semi-forbidden broad emission line C III]1909 may be significantly contributed from Thomson scattering because this line has small resonance scattering optical depth in the broad absorption line region, which leads to distinct and significant polarized flux in this broad emission line.
방사능 오염도 측정에 사용하기 위한 이중구조 고분자막이 폴리설폰과 세륨활성화된 이트륨실리케이트(CAYS)를 이용하여 제조되었다. 제조된 막은 순수 고밀도 고분자 지지층과 이에 제막된 고분자 용액의 상전환 공정에 의해 고형화된 CAYS 함침 활성층의 이중구조로 구성된다. 제막공정에서 대기방치 공정이 생략되었을 때 CAYS를 포함하는 활성층은 전형적인 비대칭 구조를 지니며, CAYS 입자들이 고분자 구조 사이에 박혀있는 형상을 지닌다. 제막공정에서 대기에 방치하는 시간이 증가할수록 막의 형상은 스폰지 구조를 띠며 CAYS는 고분자 구조로부터 분리되어 막 내부에 셀 같은 공간에 밀집되어 존재함을 보였다. 한편, 두 충 사의 계면형상은 고분자 고형화 과정에서의 상전환 속도와 밀접한 관련되었으며, 대기방치 시간의 증가에 따라 계면의 구분이 뚜렷하게 나타나지 않았다. 방사능 탐지 특성에서 스폰지 구조를 지니는 막의 고분자 구조는 방사성핵종이 통과할 수 없는 밀집된 형상을 지니면서 탐지효율의 감소를 초래하는 것으로 나타났다.
We present the calculation of X -ray spectra produced through Compton scattering of soft X-rays by hot electrons in the spherical shell geometry, using fully relativistic Monte Carlo simulation. With this model, we show that the power-law component, which has been observed in the low luminosity state of low-mass X-ray binaries (LMXBs), is explained physically. From a spectral. analysis, we find that spectral hardness is mainly due to the relative contribution of scattered component. In addition, we see that Wi en spectral features appear when the plasma is optically thick, especially in the high energy range, E≳100keV. We suggest that after a number of scattering the escape probability approaches an asymptotic form depending on the geometry of the scattering medium rather than on the initial photon spectrum.
A scintillator using organic materials can be easily manufactured in various shapes and sizes to suit the user’s purpose. A quantum dot (QD)-based scintillator has a number of advantages over commercial scintillators, including emission wavelength control, high-purity emission of a specific wavelength, high photoluminescence efficiency, and good photostability. The organic scintillators doping with various agents into the polymer media to increase scintillation efficiency and to control the emissioning wavelength through energy transfer process. In this study, scintillator enhancement was observed with different QDs material and detection response to gamma and neutron was investigated in energy spectrum. Multishell- structure QDs (CdS/CdZnS/ZnS) were fabricated and utilized to offset the shortcomings of single-shell-structure QDs, and the optical properties and the gamma and neutron detection performance capabilities were evaluated. The results of the evaluation of the detection response of the QD-based scintillator confirmed that the neutron/gamma classification performance was similar to that of a commercial scintillator. Furthermore, the gamma detection efficiency was improved by 34–38% (in the case of 137Cs) compared to a commercial scintillator. This study is especially notable in that the organic scintillator incorporated with the newly fabricated QDs can be utilized for gamma and neutron detection for the operation and decommissioning various nuclear facilities.
The nuclear fuel that melted during the Fukushima nuclear accident in 2011 is still being cooled by water. In this process, contaminated water containing radioactive substances such as cesium and strontium is generated. The total amount of radioactive pollutants released by the natural environment due to the nuclear accident in Fukushima in 2011 is estimated to be 900 PBq, of which 10 to 37 PBq for cesium. Radioactive cesium (137Cs) is a potassium analog that exists in the water in the form of cations with similar daytime behavior and a small hydration radius and is recognized as a radioactive nuclide that has the greatest impact on the environment due to its long half-life (about 30 years), high solubility and diffusion coefficient, and gamma-ray emission. In this study, alginate beads were designed using Prussian blue, known as a material that selectively adsorbs cesium for removal and detection of cesium. To confirm the adsorption performance of the produced Prussian blue, immersion experiments were conducted using Cs standard solution, and MCNP simulations were performed by modeling 1L reservoir to conduct experiments using radioactive Cs in the future. An adsorption experiment was conducted with water containing standard cesium solution using alginate beads impregnated with Prussian blue. The adsorption experiment tested how much cesium of the same concentration was adsorbed over time. As a result, it was found that Prussian blue beads removed about 80% of cesium within 10-15 minutes. In addition, MCNP simulation was performed using a 1 L reservoir and a 3inch NaI detector to optimize the amount of Prussian blue. The results of comparing the efficiency according to the Prussian volume was shown. It showed that our designed system holds great promise for the cleanup and detection of radioactive cesium contaminated seawater around nuclear plants and/or after nuclear accidents. Thus, this work is expected to provide insights into the fundamental MCNP simulation based optimization of Prussian blue for cesium removal and this work based MCNP simulation will pave the way for various practical applications.
There are analytical methods used for measuring activity when light photons are emitted for scintillating-based analytical application. When this electron returns to the original stable state, it releases its energy in the form of light emission (visible light or ultraviolet light), and this phenomenon is called scintillation. Scintillator is a general term for substances that emit fluorescence when exposed to radiation such as gamma-rays. Radioactivity is all around us and is unavoidable because of the ubiquitous existence of background radiations emitted by different sources. The scintillator contributes to these sensing, and it is expected that the inspection accuracy and limit of detection will be improved and new inspection methods will be developed in the future. Moreover, scintillators are chemical or nanomaterial sensors that can be used to detect the presence of chemical species and elements or monitor physical parameters on the nanoscale. In this study, it includes finding use in scintillating-based analytical sensing applications. A chemical and nanomaterial based sensors are self-contained analytical tools that could provide information about the chemical compositions or elements of their environment, that is, a liquid or even gas condition. Herein, we present an insightful review of previously reported research in the development of high-performance gamma scintillators. The major performance-limiting factors of scintillation are summed up here. Moreover, the 2D material has been discussed in the context of these parameters. It will help in designing a prototype nanomaterial based scintillators for radiation detection of gamma-ray.
Radioactive contamination distribution in nuclear facilities is typically measured and analyzed using radiation sensors. Since generally used detection sensors have relatively high efficiency, it is difficult to apply them to a high radiation field. Therefore, shielding/collimators and small size detectors are typically used. Nevertheless, problems of pulse accumulation and dead time still remain. This can cause measurement errors and distort the energy spectrum. In this study, this problem was confirmed through experiments, and signal pile-up and dead time correction studies were performed. A detection system combining a GAGG sensor and SiPM with a size of 10 mm × 10 mm × 10 mm was used, and GAGG radiation characteristics were evaluated for each radiation dose (0.001~57 mSv/h). As a result, efficiency increased as the dose increased, but the energy spectrum tended to shift to the left. At a radiation dose intensity of 400 Ci (14.8 TBq), a collimator was additionally installed, but efficiency decreased and the spectrum was distorted. It was analyzed that signal loss occurred when more than 1 million particles were incident on the detector. In this high-radioactivity area, quantitative analysis is likely to be difficult due to spectral distortion, and this needs to be supplemented through a correction algorithm. In recent research cases, the development of correction algorithms using MCNP and AI is being actively carried out around the world, and more than 98% of the signals have been corrected and the spectrum has been restored. Nevertheless, the artificial intelligence (AI) results were based on only 2-3 overlapping pulse data and did not consider the effect of noise, so they did not solve realistic problems. Additional research is needed. In the future, we plan to conduct signal correction research using ≈10×10 mm small size detectors (GAGG, CZT etc.). Also, the performance evaluation of the measurement/analysis system is intended to be performed in an environment similar to the high radiation field of an actual nuclear facility.
In solstices during the solar minimum, the hemispheric difference of the equatorial ionization anomaly (EIA) intensity (hereafter hemispheric asymmetry) is understood as being opposite in the morning and afternoon. This phenomenon is explained by the temporal variation of the combined effects of the fountain process and interhemispheric wind. However, the mechanism applied to the observations during the solar minimum has not yet been validated with observations made during other periods of the solar cycle. We investigate the variability of the hemispheric asymmetry with local time (LT), altitude, season, and solar cycle using the electron density taken by the CHAllenging Minisatellite Payload satellite and the global total electron content (TEC) maps acquired during 2001–2008. The electron density profiles provided by the Constellation Observing System for Meteorology, Ionosphere, and Climate satellites during 2007–2008 are also used to investigate the variation of the hemispheric asymmetry with altitude during the solar minimum. During the solar minimum, the location of a stronger EIA moves from the winter hemisphere to the summer hemisphere around 1200–1400 LT. The reversal of the hemispheric asymmetry is more clearly visible in the F-peak density than in TEC or in topside plasma density. During the solar maximum, the EIA in the winter hemisphere is stronger than that in the summer hemisphere in both the morning and afternoon. When the location of a stronger EIA in the afternoon is viewed as a function of the year, the transition from the winter hemisphere to the summer hemisphere occurs near 2004 (yearly average F10.7 index = 106). We discuss the mechanisms that cause the variation of the hemispheric asymmetry with LT and solar cycle.
우라늄 토양 및 콘크리트 폐기물의 동전기 제염 후 방사성폐기물의 시멘트 고화특성을 분석하기 위하여, 시멘트 고화 유동성 시험을 수행하고 시멘트 고화 시료를 제작하였다. 시멘트 고화시료에 대하여 압축강도, pH, 전기전도도, 방사선조사 효과 및 부피증가를 분석하였다. 방사성폐기물의 시멘트 고화의 작업 적정도는 175~190% 정도였다. 시멘트 고화시료의 방사선 조사 후 압축강도는 방사선 조사 전 압축강도 보다 약 15% 감소하였으나, 한국원자력환경공단 인수기준 (34 kgf·cm-2)을 만족하였다. 동전기 제염 후 방사성폐기물의 시멘트 고화 시료에 대한 SEM-EDS 분석결과, 알루미늄상은 시멘트와 잘 결합 한 형상을 나타낸 반면, 칼슘상은 시멘트와 분리된 형상을 나타내었다. 방사성폐기물의 시멘트 고화 부피는 시멘트에 대한 폐기물의 배합과 수분량에 따라 다르게 나타났다. 방사성폐기물의 시멘트 고화 부피(C-2.0-60)는 약 30% 증가였으며 동전기 제염 후 생성된 방사성폐기물의 영구처분은 적절하다고 판단되었다.