검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 168

        101.
        2015.06 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to compare the growth, inorganic components, and proximate components of Codonopsis lanceolata grown in 10 regions of Korea for selecting superior species and breeding by crossing. Among the all tested lines, the shortest plant height (217.12 cm) was observed from the Ulleungdo region line (No. 4) while the longest (273.9 cm) was observed from Hwasun region line (No. 9). In addition, the lines of central and northern region (No. 1~No. 7) tend to have shorter plant height than those of southern region (No. 8~No. 9) except Jejudo region line (No. 10). Flowering tends to be late towards southern region, and lines in central and northern regions were started flowering about 2 weeks earlier than those in southern regions. However, the heaviest root weight was 13.1 g, found in only Jejudo line (No. 10) whereas there was no significant difference found in the other regions which have a range of 8.3~11.0 g. The inorganic components were varied in each line, however, proportion of macroelements, such as K, Ca, and P, was the largest for every line. Especially for Heongseong region line (No. 2), had larger proportion of macroelements than the others. There was a difference of proximate compositions of Codonopsis lanceolata, except the moisture content, among all regions, however, it was generally shown that the content of crude protein (1.31~3.76%) and crude fiber (2.18~3.12%) was the highest.
        103.
        2014.09 서비스 종료(열람 제한)
        The isolated single coronary artery is a rare congenital anomaly, in which both coronary arteries arise from a solitary ostium. Diagnosis of coronary anomalies and identification of the exact anatomy of coronary arteries has significant clinical importance, hence, myocardial ischemia or sudden cardiac death is usually related to its course of anomalous coronary artery. Most patients with a single coronary artery are asymptomatic and have normal electrocardiogram and negative stress tests. However, if the patient has other structural abnormalities, for example, ventricular hypertrophy, the exam is determined. This report describes a case of single coronary artery, where the right coronary artery originated from the distal left circumflex artery in a patient with hypertrophic ardiomyopathy.
        104.
        2014.07 서비스 종료(열람 제한)
        AtRabG3b and CaMsrB2 genes incorporated into pPZP vetor were transformed to Korean soybean cultivar Kwangan using highly efficient transformation system. AtRabG3b gene plays a positive role in xylem development in Arabidopsis and 64 transgenic plants were produced. CaMsrB2 gene is known to confer drought tolerance in rice and 63 transgenic plants were produced. As a result of PPT leaf painting assay, about 20% of transformation efficiency was observed from 2 times of inoculation. These transgenic plants were confirmed for gene introduction using PCR. Currently, the copy number and the gene expression is investigating using qRT-PCR and RT-PCR. Moreover, 62 lines and 53 lines of T1 seeds from AtRabG3b and CaMsrB2, respectively, were sown in GMO field.
        105.
        2014.07 서비스 종료(열람 제한)
        The PepMoV has been considered the most frequently detected potyvirus. When it co-infects with CMV or PMMoV, it gives severe impact to total pepper harvest in Korea. Since F1 hybrid that resistant to PepMoV has not been developed, we have developed transgenic peppers using Agrobacterium-mediated transformation with a Hc-Pro gene of the PepMoV. A large number of GM peppers were tested for resistance to the PepMoV, and after consequent self-crossing up to T4 generation, a highly tolerant pepper to PepMoV called T20 was selected. So far, BC4F1 lines have been selected by back-crossing with 4 elite lines through a breeding program. Very recently, based on molecular analysis, we have selected another event, #10-2, which is also resistant to PepMoV. Horticultural difference was investigated for both GM lines, #T20 and 10-2, and no significance was found comparing to non-GM lines.
        106.
        2014.07 서비스 종료(열람 제한)
        ORE7 gene incorporated into 3 different promoters including pCKLSL-35S, pCKLSL-TP and pCSENIF was transformed to Korean soybean variety Kwangan using highly efficient soybean transformation system. The gene is known to exhibit a delayed leaf senescence phenotype in Arabidopsis. Fourteen, Fifteen and nine transgenic plants were produced from pCKLSL-35S::ORE7, pCKLSL-TP::ORE7 and pCSENIF::ORE7, respectively. Moreover, transgenic plants were confirmed for gene introduction and their expression using PCR, qRT-PCR and RT-PCR. To identify the transgene insertion events, the analysis of flanking sequence was determined. As a results, T-DNA was integrated intergenically in transgenic line 1 of pCKLSL-35S::ORE7 and line 1 of pCSENIF::ORE7. Currently, flanking sequence analysis with pCKLSL-35S::ORE7, pCKLSL-TP::ORE7 and pCSENIF::ORE7 is carrying out to investigate the stable T-DNA insertions.
        107.
        2014.07 서비스 종료(열람 제한)
        Insect resistant genes encode insecticidal δ-endotoxins that are widely used for the development of insect-resistant crops. Common soybean is a crop of economic and nutritious importance in many parts of the world. Korean soybean variety Kwangan was transformed with Insect resistant genes. These genes were transformed into Kwangan using highly efficient soybean transformation system. Transgenic plants harboring Insect resistant genes were confirmed for gene introduction and their expression using PCR, real-time PCR and RT-PCR. The confirmation of stable gene introduction with Insect resistant genes was also performing by Southern blot analysis. In addition, Flanking sequence analysis and agronomic characters were also investigated
        108.
        2014.07 서비스 종료(열람 제한)
        Soybean mosaic virus (SMV), a member of Potyviridae family, is one of the most typical viral diseases and results in yield and quality loss of cultivated soybean. Due to the depletion of genetic resources for resistance breeding, a trial of genetic transformation to improve disease resistance has been performed by introducing SMV-CP and HC-Pro gene by RNA interference (RNAi) method via Agrobacterium-mediated transformation. Transgenic plants were infected with SMV strain G5 and investigated the viral response. As a result, two lines (3 and 4) of SMV-CP(RNAi) transgenic plants and three lines (2, 5 and 6) of HC-Pro(RNAi) transgenic plants showed viral resistance. In genomic Southern blot analysis, most of lines contained at least one T-DNA insertion in both SMV-CP(RNAi) and HC-Pro(RNAi) transgenic plants. Subsequent investigation confirmed that no viral CP and HC-Pro gene expression was detected in two SMV-resistant lines of SMV-CP(RNAi) and three lines of HC-Pro(RNAi) transgenic plants, respectively. On the other hand, non-transgenic plants and other lines showed viral RNA expression. Viral symptoms affected seed morphology, and clean seeds were harvested from SMV-resistant line of SMV-CP(RNAi) and HC-Pro(RNAi) transgenic plants. In addition, strong viral gene expression was detected from seeds of SMV-susceptible non-transgenic plants and SMV-susceptible transgenic lines. When compared the viral resistance between SMV-CP(RNAi) and HC-Pro(RNAi) transgenic plants, soybean transgenic plants with the HC-Pro gene using RNAi strategy showed much stronger and higher frequency of viral resistance.
        109.
        2014.07 서비스 종료(열람 제한)
        Genome sequencing researches for considerable numbers of crops and wild plants are being developed. Cytogenetic researches according to chromosome number and size are essential to confirm and comprehend ploidy level and genome size before genome sequencing project is actually conducted. Cytogenetic researches on six food crop plants were carried out by DAPI staining and fluorescence in situ hybridization (FISH) method. Fagopyrum esculentum Moench showed 2n=2x=16, each chromosome length of 1.42㎛ to 1.77㎛, total chromosome length of 13.31㎛, and karyotypic formula of 2n=8m; Phaseolus angularis W.F. Wight, 2n=2x=22, 2.01㎛ to 3.84㎛, total 28.03㎛, 2n=9m+2sm, Perilla frutescens var. japonica Hara, 2n=2x=40, 1.73㎛ to 2.76㎛, total 44.36㎛, 2n=5m+13sm+2st. Chromosome sizes of the other three species such as, Panicum miliaceum L., 2n=2x=36, total chromosome length of 30.83㎛, Sesamum indicum L., 2n=2x=26, 27.39㎛, lpomoea batatas L., 2n=2x=30, total 33.51㎛ were too small for each chromosome type to be identified and analyzed. The result of FISH analysis using 5S and 45S rDNA probe showed species-specific chromosome locations in the genome. These preliminary analyses were carried out to decide which food crop to prioritize for genome sequencing. This work was supported by the “Cooperative Research Program for Agriculture Science & Technology Development (No.PJ009837), Rural Development Administration, Republic of Korea.
        111.
        2012.07 서비스 종료(열람 제한)
        Phosphorus is one of the macronutrients essential for plant growth and development, as well as crop productivity. Many soils around the world are deficient in phosphate (Pi) that plants can utilize. To cope with the stress of Pi starvation, plants have evolved many adaptive strategies, such as changes of root architecture and enhanced Pi acquisition form soil. To understand molecular mechanism underlying Pi starvation stress signaling, we characterized the activation-tagged mutant showing altered responses to Pi deficiency compared to wild type Arabidopsis and named hsp3 (hypersensitive to Pi starvation3). hsp3 mutant exhibits enhanced phosphate transporter activity, resulting in higher Pi content than wild type. However, in root architectural change under Pi starvation, hsp3 shows hyposensitive responses than wild type, such as longer primary root elongation, lower lateral root density. Histochemical analysis using hsp3 mutant expressing auxin-responsive DR5::GUS reporter gene, indicated that auxin allocation from primary to lateral roots under Pi starvation is aborted in hsp3 mutant. Molecular genetic analysis of hsp3 mutant revealed that the mutant phenotype is caused by the lesion in ENHANCED SILENCING PHENOTYPE4 (ESP4) gene whose function is proposed in mRNA 3’ end processing. Here, we propose that mRNA processing plays a crucial role in Pi homeostasis in Arabidopsis.
        112.
        2012.07 서비스 종료(열람 제한)
        Development of transgenic plant with desirable traits to cultivated plant is one of the important procedures in plant molecular breeding. However, applicable assessment of transgenic plant in laboratorial scale is not much except cultivating transgenic plant for a whole life in field condition. Here, we analyzed chlorophyll fluorescence in three transgenic soybean lines with AtMYB44 transcription factor for assessment of photosynthetic activity under abiotic stresses such as drought. Soybean varieties used in this study were ‘Bert’ and ‘Bert’ derived three transgenic soybeans, ‘AtMYB44 CM35101’, ‘AtMYB44 CM2471’, and ‘AtMYB44 CM4481’. Analyzed five different chlorophyll fluorescence variables are maximum PSII quantum yield (QY_max), steady state PSII quantum yield (QY_Lss), steady state non-photochemical quenching (NPQ_Lss), coefficient of photochemical quenching in steady-state (Qp_Lss), and fluorescence declineratio in steady-state (Rfd_Lss). To determine main chlorophyll fluorescence variable affected by abiotic stress, principal component analysis (PCA) was conducted with five chlorophyll fluorescence variables measured from four varieties. QY_Lss and NPQ_Lss were main chlorophyll fluorescence variables to evaluate abiotic stress, particularly in drought stress. In comparison with transgenic soybean lines based on chlorophyll fluorescence variables, ‘AtMYB44 CM2471’ and ‘AtMYB44 CM4481’ are more tolerant to drought than the others. Interestingly, three transgenic soybean lines which have a same AtMYB44 gene with different regions of chromosome revealed the quite different responses of chlorophyll fluorescence to drought treatment.
        117.
        2010.10 KCI 등재 서비스 종료(열람 제한)
        The ripening behavior of three apple cultivars, ‘Tsugaru’, ‘Hongro’ and ‘Fuji’ was distinctive and the involvement of POLYGALACTURONASE(PG) in the fruit softening process was confirmed to be ethylene dependent. Fruit softening is genetically coordinated by the action of several cell wall enzymes, including PG which depolymerizes cell wall pectin. Also, loss of firmness is associated with increasing of the ripening hormone, ethylene. In this work, climacteric ripening of three apple cultivars, Tsugaru, Hongro and Fuji, producing different ethylene levels and ripening responses, was examined. Correspondingly in Fuji, a linear and basal ethylene level was observed over the entire period of measurements, and Tsugaru and Hongro displayed a typical climacteric rise in ethylene production. Transcript accumulation of genes involved in ethylene biosynthesis (MdACS3 and MdACO1) and MdPG1 was studied in Tsugaru, Hongro and Fuji cultivars. Expression of MdACO1 transcripts was shown in all three ripened apple fruits. However, the MdACS3 and MdPG1 were transcribed differently in these cultivars. Comparing the MdPG1 of ‘Tsugaru’, ‘Hongro’ and ‘Fuji’, structural difference was discovered by genomic Southern analysis. Overall results pointed out that MdACS3 and MdPG1 play an important role in regulation of fruit ripening in apple cultivar.
        6 7 8 9