검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,255

        124.
        2022.10 구독 인증기관·개인회원 무료
        It is likely to occur internal exposure for workers in Nuclear Power Plants (NPPs) due to the intake of radionuclide. To assess the internal exposure dose the measurement of activity for remain radionuclide is necessary. The Whole Body Counters (WBCs) are commonly used for measurement of remain radionuclide activity in human body. Korea Hydro & Nuclear Power Co., Ltd. (KHNP) conduct performance test of WBCs in all NPPs for every year to confirm the performance of equipment. The performance test is conducted using unknown sources and the participants of the comparison test submit the radionuclide and activity of the unknown sources measured by WBC as a result. The performance indicator and criteria for WBC recommended in the American National Standards Institute (ANSI) N13.30 report published in 2011 are applied. The performance indicator is Root Mean Squared Error (RMSE) and criteria is 0.25 or less. The results of performance test performed in 2022 for all WBC is meet the ANSI N13.30 criteria. And the RMSE values are confirmed from 0.01 to 0.23. This means that the residual radioactivity measurement results using WBC are reliable.
        125.
        2022.10 구독 인증기관·개인회원 무료
        Since radon was detected in mattresses of famous bed furniture brands in 2018, the nuclear safety and security commission (NSSC) announced the radiation safety management act in April 2021 to protect the public health and environment. This act stipulates the safety management of radiation that can be encountered in the natural environment such as the notification of radioactivity concentration of source materials, process by-products, the installation and operation of radioactive monitors. In this study, a model was established to predict radioactive exposure dose from radioactive materials such as radon and uranium detected in consumer products such as bed mattresses, pillows, shower, bracelets and masks in order to identify major radioactive substances that largely affect the exposure dose. A period of seven years from 2014 to 2020 was investigated for the source materials and exposure doses of consumer products containing naturally occurring radioactive materials (NORMs). We analyzed these using machine learning models such as classification and regression tree (CART), Random Forest and TreeNet. Index development and verification were performed to evaluate the predictive performance of the models. Overall, predictive performance was highest when Random Forest or TreeNet was used for each consumer product. Thoron had a great influence on the internal exposure dose of bedding, clothing and mats. Uranium had a great influence on the internal exposure dose of other consumer products except whetstones. When the number of data is very small or the missing value rate is high, it is difficult to expect accurate predictive performance even with machine learning techniques. If we significantly reduce the missing value rate of data or use the limit of detection value instead of missing values, we can build a model with more accurate predictive performance.
        126.
        2022.10 구독 인증기관·개인회원 무료
        Plasma Arc Melter (MSO) system has been developed for the treatment and the stabilization of various kinds of hazardous and radioactive waste into the readily disposable solidification products. Molten salt oxidation system has been developed for the for the treatment of halogen- and sulfurbearing hazardous and radioactive waste without emissions of PCDD/Fs and acid gases. However, PAM system has showed some difficulty in the off-gas treatment system due to the volatilization of radionuclides and toxic metals at extremely high-temperature plasma arc melter and the emissions of acid gases. MSO system has also showed the difficulty in the treatment of spent molten salt into the disposable waste form. Present study discussed the results of organics destruction performance tests for the PAM-MSO combination system, which is proposed and developed to compensate the drawbacks of each system. The worst-case condition tests for the organics destruction were conducted at lowest temperatures and the worst-case condition tests for the retention of metals and radionuclides were conducted at highested temperatures under the range of normal operating condition. For the worst-case organic destruction test, C6H5Cl was selected as a POHCs (Principal Organic Hazardous Constituents) because of its high incinerability ranking and the property of generation of chlorine gases and PCDD/Fs when incompletely destroyed. Simulated concrete waste spiked with 1 L of C6H5Cl was treated and the emissions of 17 kinds of PCDD/Fs and other hazardous gases such as CO, THCs, NOx, SO2 and HCl/Cl2 were measured. For the worst-case condition tests for the retention of metals and radionuclides, Pb and Cs were selected because of its high volatility characteristics. The emissions of PCDD/Fs was extremely lowered than the emission limit and those of other hazardous constituents were below their emission limit. The results of performance tests on the organics destruction suggested that tested PAM-MSO combination system could readily treat PCBs-bearing spent insulation liquid, spent ion-exchange resins used for the treatment of spent decontamination liquid in the decommission process and the concreted debris bearing hazardous organic coating materials. The decontamination factor of Cs and Co were 1.4×105, 1.4×105, respectively. The emisison of Pb was 0.562 ppm. These results suggested that tested PAM-MSO system treated low-level radioactive and pb-bearing mixed waste.
        127.
        2022.10 구독 인증기관·개인회원 무료
        The decommissioning of nuclear power plant (NPP) consists of various activities, such system decontamination, take out of activated components, segmentation of the activated components, site remediation, etc. During various activities, the generation of radioactive wastes and radiation exposure to workers is expected. The systematic waste management during the activities is important to implement the decommissioning. The inefficient waste management usually bring significant delay in decommissioning process and results in increase of decommissioning cost. The radiation exposure management is also an important issue. It is generally accepted that the hot spot, generated from operation and decommissioning of NPP, is observed in many places within containment building. Although the health physicists measure the radiation in various points, the unintended hot spots are sometimes generated and observed. The effective radiation exposure management also requires the control of personnel and space during various activities. In this study, the radiation exposure and waste management experiences of Zion NPP is reviewed. The primary nuclides and radiation exposure during various activities are systematically studied to achieve the main objectives of this paper.
        128.
        2022.10 구독 인증기관·개인회원 무료
        An induction melting facility includes several work health and safety risks. To manage the work health and safety risks, care must be taken to identify reasonably foreseeable hazards that could give rise to risks to health and safety, to eliminate risks to health and safety so far as is reasonably practicable. If it is not reasonably practicable to eliminate risks to health and safety, attention have to be given to minimize those risks so far as is reasonably practicable by implementing risk control measures according to the hierarchy of control in regulation, to ensure the control measure is, and is maintained so that it remains, effective, and to review and as necessary revise control measures implemented to maintain, so far as is reasonably practicable, a work environment that is without risks to health or safety. The way to manage the risks associated with induction melting works is to identify hazards and find out what could cause harm from melting works, to assess risks if necessary – understand the nature of the harm that could be caused by the hazard, how serious the harm could be and the likelihood of it happening, to control risks – implement the most effective control measures that are reasonably practicable in the circumstances, and to review control measures to ensure they are working as planned.
        129.
        2022.10 구독 인증기관·개인회원 무료
        Waste containers for packaging, transportation and disposal of NPP (Nuclear Power Plant) decommissioning wastes are being developed. In this study, drop tests were conducted to prove the safety of containers for packaging of the wastes and to verify the reliability of the analysis results by comparing the test and analysis results. The drop height of the waste containers was considered to be 30 mm, which is the maximum lifting speed of a 50 tons crane in the waste treatment facility converted to the drop height. Drop orientation of the containers was considered for bottom-end on drop. The impact acceleration and strain data were obtained to verify the reliability of the analysis results. Before and after the drop tests, measurement of the dose rate and the radiographic testing for concrete wall, and measurement of the wall thickness of steel plate were conducted to evaluate the radiation shielding integrity. Also, measurement of bolt torque, and visual inspection were conducted to evaluate the loss or dispersion of radioactive contents. After the drop tests, the radiation dose rate on the container surface did not increase by more than 20%, and there was no crack in the concrete. In addition, the thickness of the steel plate did not change within the measurement error. Therefore, the radiation shielding integrity of the container was maintained. After the drop tests, the lid bolts were not damaged and there was no loss of pretension in the lid bolts. In addition, there was no loss or dispersion of the contents as a result of visual inspection. In order to prove the reliability of the drop analysis results, safety verifications were performed using the drop test results, and the appropriate conservatism for the analysis results and the validity of the analysis model were confirmed. Therefore, the structural integrity of the waste containers was maintained under the drop test conditions.
        130.
        2022.10 구독 인증기관·개인회원 무료
        With the aging of nuclear power plants (NPPs) in 37 countries around the world, 207 out of 437 NPPs have been permanently shutdown as of August 2022 according to the IAEA. In Korea, the decommissioning of NPPs is emerging as a challenge due to the permanent shutdown of Kori Unit 1 and Wolsong Unit 1. However, there are no cases of decommissioning activities for Heavy Water Reactor (HWR) such as Wolsong Unit 1 although most of the decommissioning technologies for Light Water Reactor (LWR) such as Kori Unit 1 have been developed and there are cases of overseas decommissioning activities. This study shows the development of a decommissioning waste amount/cost/process linkage program for decommissioning Pressurized Heavy Water Reactor (PHWR), i.e. CANDU NPPs. The proposed program is an integrated management program that can derive optimal processes from an economic and safety perspective when decommissioning PHWR based on 3D modeling of the structures and digital mock-up system that links the characteristic data of PHWR, equipment and construction methods. This program can be used to simulate the nuclear decommissioning activities in a virtual space in three dimensions, and to evaluate the decommissioning operation characteristics, waste amount, cost, and exposure dose to worker. In order to verify the results, our methods for calculating optimal decommissioning quantity, which are closely related to radiological impact on workers and cost reduction during decommissioning, were compared with the methods of the foreign specialized institution (NAGRA). The optimal decommissioning quantity can be calculated by classifying the radioactivity level through MCNP modeling of waste, investigating domestic disposal containers, and selecting cutting sizes, so that costs can be reduced according to the final disposal waste reduction. As the target waste to be decommissioning for comparative study with NAGRA, the calandria in PHWR was modeled using MCNP. For packaging waste container, NAGRA selected three (P2A, P3, MOSAIK), and we selected two (P2A, P3) and compared them. It is intended to develop an integrated management program to derive the optimal process for decommissioning PHWR by linking the optimal decommissioning quantity calculation methodology with the detailed studies on exposure dose to worker, decommissioning order, difficulty of work, and cost evaluation. As a result, it is considered that it can be used not only for PHWR but also for other types of NPPs decommissioning in the future to derive optimal results such as worker safety and cost reduction.
        134.
        2022.10 구독 인증기관·개인회원 무료
        Bentonite, which mostly consists of montmorillonite, is considered as a suitable buffer material for disposal of high-level radioactive wastes in deep geological repository due to its high swelling capacity, low permeability, and strong retention capacity of radionuclide migration. Alkaline and saline solutions originated from degradation of cementitious material and seawater intrusion, respectively, may cause the changes in mineralogical and chemical properties of montmorillonite with various processes such as cation exchange within the interlayer, dissolution of montmorillonite, and precipitation of second minerals. In this study, montmorillonite alteration under alkaline and saline environments and its influences on retention of cesium and iodide by bentonite buffer were investigated. The reactions of bentonite (Bentonil-WRK) with alkaline solutions (0.1 M KOH and NaOH) and simulated saline solution were performed for 7 days in batch experiments at 25°C. After the experiments, reacted bentonite samples were characterized by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, Short Wavelength Infrared (SWIR) spectrometry. The concentrations of cesium and iodide dissolved in the solutions were analyzed using an inductively coupled plasma mass spectrometer (ICP–MS). The XRD patterns showed significant decrease in the interlayer space of montmorillonite after the reaction with alkaline solution due to cation exchange and change in hydration status at the interlayer. The retention of cesium and iodide in alkaline and saline solutions were affected by montmorillonite alteration and ion competition. Therefore, the montmorillonite alteration affecting the nuclide retention capacity and long-term stability of bentonite buffer should be considered in the safety assessment of long-term geological disposal performance.