검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4,098

        161.
        2023.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        According to NSSC Notice No. 2021-10, safety analysis needs to be introduced in the decommissioning plan. Public and occupational dose analyses should be conducted, specifically for unexpected radiological accidents. Herein, based on the risk matrix and analytic hierarchy process, the method of selecting accident scenarios during the decommissioning of nuclear power plants has been proposed. During decommissioning, the generated spent resin exhibits relatively higher activity than other generated wastes. When accidents occur, the release fraction varies depending on the conditioning method of radioactive waste and type of radioactive nuclides or accidents. Occupational dose analyses for 2 (fire and drop) among 11 accident scenarios have been performed. The radiation doses of the additional exposures caused by the fire and drop accidents are 1.67 and 4.77 mSv, respectively.
        4,000원
        162.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        목적 : 본 연구는 만 50세 이상 성인에서 녹내장, 황반변성, 당뇨병성망막병증의 의사진단여부와 삶의 질의 관 련성을 알아보고자 하였다. 방법 : 국민건강영양조사 제7기(2016~2018) 자료 중 만 50세 이상의 성인으로 녹내장, 황반변성, 당뇨병성망 막병증의 의사진단여부에 따라 현재의 건강상태를 묻는 EQ-5D와의 관계를 분석하였으며, p<0.050인 경우 유의 한 값으로 판단하였다. 결과 : 녹내장, 황반변성, 당뇨병성망막병증에 영향을 주는 요인은 공통적으로 연령이었다. 이들 안질환과 삶의 질의 관계에서 녹내장과 당뇨망막병증은 일상 활동에서의 불편함이 있는 것으로 보였으나 통계적 유의성은 없었 다. 반면 황반변성은 자기관리 능력을 상실시킬 수 있는 위험이 유의하게 큰 것으로 나타났다[Odds ratio: 2.56(95% CI:1.05-6.25)]. 결론 : 본 연구에서 녹내장, 황반변성, 당뇨망막병증과 같은 주요 안질환은 연령과 관련이 있으며, 황반변성은 자기관리능력과 같은 삶의 질을 저하시킨다는 것을 확인하였다
        4,200원
        163.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This case report describes the pathological features of pulmonary alveolar proteinosis(PAP) in mouse. Grossly, multiple irregular yellow-grey patches were observed on the lung surface of a C57BL/6 mouse. Histopathologically, the alveolar walls were thickened by type II cell hyperplasia and cellular infiltrates, and the bronchioles and alveolar lumens were filled with amorphous eosinophilic lipoproteinaceous material. This material was positive for Periodic acid-Schiff stain. Gomori methenamine silver staining was negative. Immunohistochemical staining showed that cells in the alveolar wall and lumen were positive for surfactant protein B, chitinase-like protein-3, and CD68. As a result, PAP was diagnosed. This is a rare case of spontaneous PAP in mice, and we report the histopathological characteristics along with the literature.
        3,000원
        164.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Toll-like receptor 4 (TLR4) is known to contribute to the modulation of insulin resistance and systemic inflammation seen in obesity and the metabolic syndrome. The present study was performed to investigate the fertility competence of TLR4 knock out male mice (TLR4 mice) on a high-fat diet (HFD), compared to a normal-chow diet (NCD). The controls included wildtype (WT) mice fed on a HFD or NCD. Six-week-old male mice were fed with either a NCD or HFD for 20 weeks. Body and organ weights, serum levels of glucose, triglycerides and hepatoxicity, sperm quality and spermatogenesis were observed after the sacrifice. Also, randomly selected male mice were mated with virgin female mice after feeding of 19 weeks. The weight of the body and organs increased in WT and TLR4 mice on a HFD compared to those of mice on a NCD. The weights of the reproductive organs did not vary among the treatment groups. The motility and concentration of the epididymal spermatozoa decreased in both WT and TLR4 mice fed a HFD. The pregnancy rate and litter size declined in the HFD-fed WT mice compared to the HFD-fed TLR4 mice. In conclusion, the HFD alters energy and steroid metabolism in mice, which may lead to male reproductive disorders. However, fertility competence was somewhat restored in HFD-fed TLR4 male mice, suggesting that the TLR4 is involved in testis dysfunction due to metabolic imbalance.
        4,300원
        165.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        자기공명영상은 영상 의학 분야에서 다른 진단 장비에 비해 연부 조직에 대한 높은 대조도를 지니고 있고 인대의 손상, 주변 조직의 염증, 골염 등의 병변을 진단하는 데 유용하여 연골 및 관절 병변의 진단에 널리 이용되고 있다. 또한, 기존 고식적 TSE 기법 외에도 SMS 기법, DL 기법, CS 기법, 병렬 영상 기법 등 다양한 펄스 시퀀스들이 개발되고 임상에서 사용되고 있다. 본 연구는 무릎 관절 자기공명영상 검사에서 얇은 절편 검사 시 고식적 TSE 기법, SMS TSE 기법, DL TSE 기법에서 영상을 획득하여 각 각의 영상의 비교를 통해 무릎 관절 영상 획득에 최적의 기법에 대하여 알아보고자 한다. 무릎 관절 질환의 진단을 위해 본원에 내원한 환자를 대상으로 고식적 TSE 기법, SMS TSE 기법, DL TSE 기법을 적용하여 시상면 T2 강조 영상을 획득한 후 신호 대 잡음비, 대조도 대 잡음비, 검사 시간, 영상의 질 평가를 정량적, 정성 적 방법으로 비교 분석하였다. 연구 결과 세 가지 기법으로 획득한 영상 비교 시 통계적으로 유의한 차이가 있었으며, 환자 의 상태와 임상의 상황을 종합적으로 고려하여 적절한 기법을 선택한다면, 최적의 영상을 제공할 수 있다고 생각된다.
        4,000원
        166.
        2023.05 구독 인증기관·개인회원 무료
        Radioactive materials depositied after nuclear accident or radiological emergency result in radiation exposure to individuals living in long-term contaminated territories. Therefore, the remedial actions should be taken on affected areas for the evacuated residents to return to their homes and normal lifestyle. Meanwhile, radiation exposure occurs through various pathways by work types during the site clean-up. Therefore, dose assessment is crucial to protect emergency workers and helpers from the potential radiological risk. This study estimated the exposure dose to individuals decontaminating the areas contaminated with 60Co, 63Ni, 90Sr, 134Cs, 137Cs, and then calculated the maximum workable soil concentration to comply with the reference level of 20 mSv/y for transition to existing exposure situations. For the realistic assessment, the detailed exposure scenarios depending on the types of work (excavation, collection, transportation, disposal, landfill), and the relevant exposure pathways were used. In addition, with the LHS (Latin Hypercube Sampling) - PRCC (Partial Rank Correlation Coefficient) method, sensitivity analysis was performed to identify the influence of the input parameters and their variation on the model outcomes. As a result, the most severe exposure-induced type was identified as the excavator operation with an annual individual dose of 4.75E-01 mSv at the unit soil concentration (1 Bq/g), from which the derived maximum workable soil concentration was 4.21E+01 Bq/g. Dose contribution by isotopes were found to be 60Co (55.63%), 134Cs (32.01%), and 137Cs (12.28%), and the impact of 63Ni and 90Sr were found to be negligible. Dose contribution by exposure pathways decreased in the following order: ground-shine, soil ingestion, dust inhalation, and skin contamination. Furthermore, the most high sensitive input parameters and their PRCC were found to be as the dilution factor (0.75) and as the exposure time (0.63). In conclusion, the results are expected to contribute to optimize radiation protection strategeis for recovery workers and to establish appropriate response procedures to be applicable in areas with high deposition density after a radiological or nuclear emergency.
        167.
        2023.05 구독 인증기관·개인회원 무료
        Dry active wastes (DAWs) are a type of combustible radioactive solid waste, which includes decontamination paper, protective clothing, filters, plastic bags, etc. generated from operating nuclear facilities and decommissioning projects. The volume of DAWs could be increased over time, disadvantage to higher disposal costs and space utilitization of disposal site. Additionally, incineration methods cannot be applied to DAWs, unlike general environmental waste, due to concerns about air pollution and the release of harmful chemicals with radioactive nuclides into the atmosphere. Recently, KAERI developed an alternative thermochemical process for reducing the volume of DAW, which involves a step-wise approach, including carbonization, chlorination, and solidification. The purpose of this process is to selectively separate the radioactive nuclides from carbonized DAWs that are less than clearance criteria, which can be disposed of as non-radioactive waste. In this research, we investigated the thermal decomposition characteristics of DAWs using nonisothermal thermogravimetric analysis, which was performed with different categorized wastes and heating conditions. As a result, the cellulose DAWs such as decontamination paper and cotton were thermally decomposed in three or four-step depending on the heating conditions. On the other hand, the hydrocarbon and rubber DAWs such as plastic bags and latex were thermally decomposed in one or two-step. Therefore, it could be suggested the thermochemical treatment conditions that minimize the decomposition of DAWs by controlling the reaction steps, and we will try to apply these results for cellulose type DAWs such as decontamination paper and cotton, which is generated majorly from the nuclear facilities in the future.
        168.
        2023.05 구독 인증기관·개인회원 무료
        In order to use nuclear energy stably, high level radioactive waste including spent nuclear fuel that is inevitably discharged from nuclear power plants after electricity generation must be managed safely and isolated from the human living area for a long period of time. In consideration of the accumulated amount of spent nuclear fuel anticipated according to the national policy for HLW management, the area required for the deep geological repository facility is expected to be very large. Therefore, it is essential to conduct various studies to optimize the area required for the disposal of spent nuclear fuel in cases where the nationally available land is extremely limited, such as in Korea. In this study, as part of such research, the strategies and the requirements for the preliminary design of a high efficiency repository concept of spent nuclear fuel were established. For PWR spent nuclear fuel, seven assemblies of spent nuclear fuel can be accommodated in a disposal canister, and high burnup of spent nuclear fuel was taken into consideration, and the source terms such as the amount and time of discharge and disposal were based on the 2nd national basic plan. By evaluating the characteristics, the amount of decay heat that can be accommodated in the disposal canister was optimized through the combination of seven assemblies of spent nuclear fuel. The cooling period of the radiation source for the safety assessment of the repository system was set at 55 years, and the operation of the repository would start from 2070 and then the disposal schedule would be conducted according to the disposal scenario based on the national basic plan. With these disposal strategies described above, the main requirements for setting up the conceptual design of the high efficiency repository system to be carried out in this study were described below. • A combination of seven spent nuclear fuels with high heat and spent nuclear fuels with low heat was loaded into a disposal canister, and the thermal limit per disposal canister was 1,600 W. • In order to maintain the long-term performance of the repository, the maximum temperature design limit in the buffer material was set to 130°C. • In the deep disposal environment, the safety factor [yield strength/maximum stress] required to maintain the structural stability of the disposal canister should be maintained at 2.0 or higher so that integrity of the canister can be maintained even under long-term hydrostatic pressure and buffer swelling pressure in the deep disposal environment. • The repository should have a maximum exposure dose of 10 mSv/yr or less, which is the legal limit in case of a single event such as an earthquake, and the risk level considering natural phenomena and human intrusion, which is less than the legal limit of 10-6/yr. These strategies and requirements can be used to develop the high-efficiency geological disposal concept for spent nuclear fuels as an alternative disposal concept.
        169.
        2023.05 구독 인증기관·개인회원 무료
        It is expected that around 576,000 bundles of CANDU spent nuclear fuels (SNF) will be generated from the four CANDU reactors located at the Wolsong site. The authors designed and proposed a reference disposal concept based on the KBS-3 type and KURT geological data in 2022. In addition, we have reviewed the literatures and selected four alternative disposal methods to develop the higherefficiency disposal concept than the reference concept since 2021. As known well, the most important safety functions of the geological disposal are containment and isolation, and the secondary function is retardation. A disposal canister covers the former, and buffer may do the latter. In this study, we design the engineered barrier systems for the four alternative concepts: (1) mined deep borehole matrix, (2) sub-seabed disposal, (3) deep borehole disposal, and (4) multi-level dispoal. Assuming total 10,000 tU of CANDU SNF, four different kinds of unit disposal module consisting of disposal canisters and compacted bentonite buffers are designed based on the technique currently available. Two alternative concepts, sub-seabed disposal and multi-level disposal, share the same unit module design with the reference concept in 2022. For all the alternative concepts, we assume that the density of the compacted buffer is 1.6 g/cm3. For the mined deep borehole matrix disposal, we introduce a disposal canister slightly modified from the Canadian NWMO canister with a capacity of 48 bundles. The thickness of a copper layer is changed to be 10 mm considering the long-term corrosion resistance. The buffer thickness around a disposal canister is 20 cm, and the diameter of a borehole is 100 cm. Two different kinds of buffer blocks are proposed for the easy handling of them. For the deep borehole disposal, a SiC-stainless steel canister is designed, and 63 bundles of CANDU SNF is emplaced in the canister. We expect that the SiC ceramic canister shows very excellent corrosion resistance and has a high thermal conductivity under the geological conditions. The deep borehole will be plugged with four layered sealing materials consisting of granite blocks, compacted bentonite, SiC ceramic, and concrete plugs.
        170.
        2023.05 구독 인증기관·개인회원 무료
        Since the first operation of the Gori No. 1 nuclear power plant in Korea was started to operate in 1978, currently 24 nuclear power plants have been being operated, out of which 21 plants are PWR types and the rest are CANDU types. About 30% of total electricity consumed in Korea is from all these nuclear power plants. The accumulated spent nuclear fuels (SNFs) generated from each site are temporarily being stored as wet or dry storage type at each plant site. These SNFs with their high radiotoxicity, heat generating, and long-lived radioactivity are currently the only type of high-level radioactive waste (HLW) in Korea, which urgently requires to be disposed of in deep geological repository. Studies on disposal of HLW in various kind of geological repositories have been carried out in such countries as Sweden, Finland, United States, and etc. with their own management policies in consideration of their situations. In Korea long-term R&D research program for safe management of SNF has also been conducted during last couple of decades since around 1997, during which several various type of disposal concepts for disposal of SNFs in deep geological formations have been investigated and developed. The first concept developed was KAERI Reference Disposal System (KRS) which is actually very much similar to Swedish KBS-3, a famous concept of direct disposal of SNF in stable crystalline rock at a depth of around 500 m which has been regarded as one of the most plausible method worldwide to direct disposal of SNF. The world first Finnish repository will be also this type. Since the characteristics of SNF discharged from domestic nuclear reactors have been changed and improved, and burnup has sometimes increased, a more advanced deep geological repository system has been needed, KRS-HB (KRS with High Burnup SNF) has been developed and in consideration of the dimensions of SNFs and the cooling period at the time point of the disposal time, KRS+, a rather improved disposal concept has also been subsequently developed which is especially focused on the efficient disposal area. Recently research has concentrated on rather advanced disposal technology focused on a safer and more economical repository system in recent view of the rapidly growing amount of accumulated SNF. Especially in Korea the rock mass and the footprint area for the repository extremely limited for disposal site. Some preliminary studies to achieve rather higher efficiency repository concept for disposal of SNF recently have already been emphasized. Among many possible ones for consideration of design for high-efficiency repository system, a double-layered system has been focused which is expected to maximize disposal capacity within the minimum footprint disposal area. Based on such disposal strategy a rather newly designed performance assessment methodology might be required to show long-term safety of the repository. Through the study some prerequisites for such methodological development will be roughly checked and investigated, which covers FEP identification and pathway and scenario analyses as well as preliminary conceptual modeling for the nuclide release and transport in near-field, far-field, and even biosphere in and around the conceptual repository system.
        171.
        2023.05 구독 인증기관·개인회원 무료
        As Korea has relatively small land area and large population density compared to other countries considering the DGD concept such as Finland and Sweden, improvements of disposal efficiency in the viewpoint of the disposal area might be needed for the current disposal system to alleviate the difficulties of site selection for the HLW repository. In this research, we conduct a numerical investigation of the disposal efficiency enhancement for a high-level radioactive waste (HLW) repository through three design factors: decay heat optimization, increased thermal limit of buffer, and double-layer concept. In the optimized decay heat model, seven SNFs with the maximum and minimum decay heat depending on actual burn-up and cooling time are iteratively combined in a canister. Thermal limit of buffer is assumed as 100°C and 130°C for reference and high-efficiency repository concepts, respectively. By implementing an optimized decay heat model and a single-layer concept with a thermal limit of buffer set at 100°C, the disposal efficiency increases to 2.3 times of the improved Korean Reference disposal System (KRS+). Additionally, incorporating either an increased thermal limit of buffer to 130°C or a double-layer concept leads to a further 50% improvement in disposal efficiency. By integrating all three design factors, the disposal efficiency can be enhanced up to five times that of the KRS+ repository. Our analysis of rock mass stability reveals that increasing the thermal limit of buffer can generate rock spalling failure in a wider area. However, when accounting for the effect of confining stress by swelling of buffer and backfill using the Mohr-Coulomb failure criteria, the rock mass failure only occurred at the corner between the disposal tunnel and deposition hole when the thermal limit of buffer was increased and a single-layer concept was applied. The results given in this study can provide various options for designing the high-efficiency repository in accordance with the target disposal area and quality of the rock mass in the potential repository site.
        172.
        2023.05 구독 인증기관·개인회원 무료
        Integrity evaluation scheme for Spent Fuel (SF) dry storage has been developed under transportation failure modes. This method especially considered the degradation characteristics of Spent Fuel (SF) during dry storage such as radial and circumferential hydride content, hydride volume fraction, oxide thickness, etc. Hydride and zircaloy cladding are considered as material composite system, using correlation models related to material properties. Critical Strain Energy Density (CSED) is compared with Strain Energy Density (SED), to evaluate cladding integrity. CSED serves as material characteristics, while SED can be considered as boundary condition. To calculate the CSED of cladding in the lateral failure mode, circumferential hydride concentration is used. SED is calculated considering both the bending moment and axial load. On the other hand, in the longitudinal failure case, fuel rod temperature, internal pressure, hoop stress, radial hydride concentration is used to calculate CSED. And pinch force (contact) was considered to evaluate SED. Model validations were conducted by comparing hot cell SF test and existing validated evaluation results. To separately handle normal transportation conditions from hypothetical accident conditions, SED according to stress-strain analysis results was separated into elastic and plastic regions. As a result of applying this scheme for 14×14 SF, failure probability of normal condition was zero, which is the similar result with DOE and same with EPRI. Regarding accident condition, lateral case showed similar result, but longitudinal case showed different but reasonable result, which was due to the different analysis conditions. The proposed methodology which was indigenously developed through this study is named as K-method.
        174.
        2023.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this paper, we report and discuss the semi-permanently hydrophilic (SPH) treatment of polyester fabric using plasma polymerization and oxidation based on atmospheric pressure dielectric barrier discharge (APDBD) technology. SiOxCy (-H) was coated on polyester fabric using Hexamethylcyclotrisiloxane (HMCTSO) as a precursor, and then plasma oxidation was performed to change the upper layer of the thin film to SiO2-like. The degradation of hydrophilicity of the SPH polyester fabrics was evaluated by water contact angle (WCA) and wicking time after repeated washing. The surface morphology of the coated yarns was observed with scanning electron microscopy, and the presence of the coating layer was confirmed by measuring the Si peak using energy dispersive x-ray spectroscopy. The WCA of the SPH polyester fabric increased to 50 degrees after 30 washes, but it was still hydrophilic compared to the untreated fabric. The decrease in hydrophilicity of the SPH fabric was due to peeling of the SiOxCy(-H) thin film coated on polyester yarns.
        4,000원