검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        1.
        2007.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Catalytic activity changes of perovskite catalysts were examined with their A-site substitution. For the preparation of catalysts, Mn was used for B-site component and La, Ce, Sr, Ba, Ca, Ag were used for A-site component of the perovskite catalysts(ABO3) The effect of calcination temperature on methane combustion and perovskite structure was also investigated. The surface area and adsorbed oxygen species were tested with BET apparatus and O2-TPD, respectively. Perovskite catalysts whose A-site was partially substituted needed higher calcination temperature than un-substituted one to form the perovskite structure. From O2-TPD experiment, it was found that methane combustion activity was directly related to the oxygen desorbing ability of the catalysts. The prepared catalyst(LM-7) was stable at 600℃ for 72 hours of reaction.
        4,000원
        2.
        2007.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Three different weather-resistant coatings were fabricated with the various weight ratios of a mill-base silicone/acrylic resin to let-down silicone /acrylic resin at 2:8, 3:7, and 4:6 respectively. The prepared coatings were tested to investigate the effect of composition of weather-resistant coatings on the physical properties. The thermal stability, salt spray exposure, and weather-resistance were improved with the increased silicone content. It was concluded that the optimum retio of mill-base silicone/acrylic resin to let-down silicone/acrylic resin would be 2:8 and the coating with 30 wt% of silicone content would have high weather-resistance.
        4,200원
        3.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to obtain the maximum flame retardancy with the minimal deterioration of physical properties of PU flame-retardant coatings, chlorine and phosphorous functional groups were introduced into the pre-polymer of modified polyesters. In the first step, the tetramethylene bis(orthophosphate) (TBOP) and neohexanediol dichloroacetate (DCA-adduct) intermediates were synthesized. In the second step, 1,4-butanediol and adipic acid monomers were polymerized with the two kind of intermediates to obtain copolymer. The modified polyesters containing chlorine and phosphorous (ATBA-10C, -20C, and -30C) were synthesized by adjusting the contents of chlorine compound (dichloroacetic acid, 10, 20, 30 wt%) with fixed the content of phosphorous compound (2 wt%). The PU flame-retardant coatings (TTBAH -10C, -20C, and -30C) were prepared using the synthesized ATBAs and HDI-trimer as curing agent at room temperature. The physical properties of PU flame-retardant coatings with chlorine and phosphorous were inferior to those with phosphorous only and the properties were getting worse with increasing chlorine content. Flame retardancy was tested with three methods. With the vertical method, Complete combustion time of ATBAHs were 259~347 seconds, which means that the prepared coatings are good flame-retardant. With the 45˚ Meckel burner method, char lengths of the three prepared coatings were less than 2.9 cm, which indicates that the prepared coatings are 1st grade flame retardancy. With the limiting oxygen index (LOI) method, the LOI values of the three prepared coatings were in the range of 30~35%, which proves good flame retardancy of the prepared coatings. From the results of flame retardancy tests of the specimens that contain the same amounts of flame retarding compounds, it was found that the coatings containing both phosphorous and chlorine show higher flame retardancy than the coatings containing phosphorous alone. This indicates that some synergy effect of flame retardancy exists between phosphorous and chlorine.
        4,900원
        4.
        2007.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Methane combustion over perovskite catalysts was investigated. For the preparation of catalysts, Co, Mn, Fe, and Ni were used as B-site components of the perovskite catalysts (ABO3) and La was used as A-site component. The effect of calcination temperature on methane combustion and perovskite structure was also investigated. The structure of perovskites, surface area, and adsorbed oxygen species were tested with XRD, BET apparatus, and O2-TPD, respectively. The formation of perovskite structure was affected by the calcination temperature. The catalyst desorbing oxygen at a lower temperature showed better activity for the methane combustion, therefore, the oxygen species desorbing at lower temperatures is responsible for the methane combustion.
        4,000원
        5.
        2007.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was focused on the maximization of flame-retardancy of polyesters by a synergism of simultaneously introduced chlorine and phosphorus into polymer chains of modified polyesters. To prepare modified polyesters, reaction intermediates, TD-adduct (prepared from trimethylolpropane/2,4-dichlorobenzoic acid (2,4-DCBA)) and TMBO (prepared from tetramethylene bis(orthophosphate)), were prepared first, then condensation polymerization of the prepared intermediates, adipic acid, and 1,4-butanediol were carried out. In the condensation polymerization, the content of phosphorus was fixed to be 2%, and the content of 2,4-DCBA that provides chlorine component was varied to be 10, 20, and 30wt%, and we designated the prepared modified polyesters containing chlorine and phosphorus as ABTT-10C, -20C, -30C. Two-component PU flame-retardant coatings (ABTTC, ABTTC-10C, ABTTC-20C, ABTTC-30C) were prepared by the curing of synthesized ABTTs with a curing agent of allophanate/trimer at room temperature. To examine the film properties of the prepared PU flame-retardant coatings, film specimens were prepared with the prepared coatings. The film properties of ABTTC, ABTTC-10C and ABTTC-20C, which contain 0, 10 and 20wt% 2,4-DCBA, respectively, were proved to be good, whereas the film properties of ABTTC-30C, which contains 30wt% 2,4-DCBA, was proved to be a little bit poor. Two kinds of flame retardancy tests, ˚45Meckel burner method and LOI method were performed. With the ˚45Meckel burner method, three flame-retardant coatings except ABTTC showed less than 3.4cm of char length, and showed less than 2 seconds of afterflaming and afterglow. From this result, the prepared flame-retardant coatings were proved to have the 1st grade flame retardancy. With the LOI method, the LOI values of the coatings containing more than 10wt% 2,4-DCBA were higher than 30%, which means that the coatings possess good flame retardancy. From these results, it was found that synergistic effect in flame retardancy was taken place by the introduced phosphorus and chlorine.
        4,900원
        6.
        2007.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To prepare weather-resistant silicone/acrylic resin coatings for an architectural purpose, tetrapolymers were synthesized by a radical polymerization. 3-Methacryloxypropyltrimethoxysilane (MPTS) as a silicone monomer and n-butyl acrylate, methyl methacrylate, and n-butyl methacrylate as acrylic monomers were used. The compositions of monomers were adjusted to fix the glass transition temperature of acrylic polymer for 20℃. The composition of MPTS in the synthesized polymer were varied from 10 wt% to 30 wt%. On the basis of synthesized resin amber paints were prepared and their physical properties and effects for weatherability were examined. The presence of MPTS in silicone/acrylic resins generally resulted in low molecular weight and broad molecular weight distribution, and also lowered the viscosity of the copolymers. The coated films prepared from these resins showed good and balanced properties in general. Adhesion to the substrate was outstanding in particular. Weatherability tests were carried out in three different types such as outdoor exposure, QUV, and SWO. The test results showed that the silicone/acrylic resins containing 30 wt% of MPTS had weather-resistant properties.
        4,500원
        7.
        2006.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The PU flame-retardant coatings (TTBAH, ATBAH-10C, -20C, and -30C) were prepared using the synthesized ATBAs and HDI-trimer as curing agent at room temperature. The physical properties of PU flame-retardant coatings with chlorine and phosphorus were inferior to those with phosphorus only and the properties were getting worse with increasing chlorine content. Flame retardancy was tested with three methods. With the vertical method, complete combustion time of ATBAHs were 259~347 seconds, which means that the prepared coatings are good flame-retardant. With the 45˚ Meckel burner method, char lengths of the three prepared coatings were less than 2.9 cm, which indicates that the prepared coatings are first grade. With the limiting oxygen index (LOI) method, the LOI values of the three prepared coatings were in the range of 30~35%, which proves good flame retardancy of the prepared coatings. from the result of flame retardancy tests of the specimens that contain the same amounts of flame retarding compounds. it was found that the coatings containing both phosphorus and chlorine show higher flame retardancy than the coatings containing only phosphorus. This indicates that there exists, some synergy effect between coexisting phosphorus and chlorine.
        4,300원
        8.
        2006.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to prepare high-solid coatings, first acrylic resins (HSAs) which contain 80% solid were synthesized, and then the prepared resins were cured with isocyanate at room temperature. In the synthesis of HSAs, viscosity, number average molecular weight (Mn) and conversion were 1372~2700 cps, 1520~1650 and 83~87%, respectively. Among the four kinds of initiators used, tert-amylperoxy-2-ethyl hexanoate was the most proper one in the synthesis of HSAs. With increasing Tg values, viscosity increased rapidly and molecular weight increased slowly. As a result of the examination of coated films, it was found that 60˚ specular gloss, impact resistance, heat resistance and cross-hatch adhesion were good, and pencil hardness, drying time and pot life were poor.
        4,000원
        9.
        2006.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Methanol and formaldehyde were produced directly by the partial oxidation of methane over mixed oxide catalysts. The catalysts were composed of Mo and Bi with late-transition metals, such as Mn, Fe, and Co. The reaction was carried out at 450℃, 50 bar in a fixed-bed differential reactor. The prepared catalysts were characterized by O2-TPD and BET apparatus. Among the catalysts used, the catalyst composed of 1:1:2.5 molar ratio of Mo:Bi:Mn showed the best methane conversion and methanol selectivity. The change in ratio of methane to oxygen affected at the conversion and selectivity, and the most proper ratio was 10:1.5. Methane conversion, methanol and formaldehyde selectivities increased with the surface areas of the catalysts. From the O2-TPD result, it was found that the oxygen species responsible for this reaction might be the lattice oxygen species desorbed at high temperature around 800℃.
        4,000원
        10.
        2006.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Acrylic adhesives for automobiles protection were prepared by emulsion polymerization. Monomers used were n-butyl acrylate(BA), acrylonitrile (AN), butyl methacrylate(BMA), glycidyl methacrylate(GMA), and acrylic acid (AA). Emulsifiers used were sodium lauryl sulfate and polyoxyethylene lauryl ether, which are an anionic emulsifier and a nonionic emulsifier respectively. Potassium persulfate was used as an initiator and polyvinyl alcohol was used as a stabilizer. Emulsion polymerization was carried out in a semi-batch reactor at 70℃ and agitation speed was kept at 200 rpm. Water resistance, heat resistance, acid resistance, alkali resistance and smoke resistance were examined. As a result, when each 0.03 mole of GMA and AA was introduced, the adhesion properties and various above mentioned resistances of the prepared adhesives were satisfied the standard for automobiles.
        4,000원
        11.
        2006.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Methanol and formaldehyde were produced directly by the partial oxidation of methane. The catalysts used were mixed oxides of late-transition metals, such as Mn, Fe, Co, Ni and Cu. The reaction was carried out at 450℃, 50 bar in a fixed-bed differential reactor. The prepared catalysts were characterized by XRD, TPD and BET apparatus. Of the catalysts, A-Mn0.2-6, which contains 0.2 mole of Mn and calcined at 600℃, showed the best catalytic activity: 3.7% methane conversion, and 30 and 28% methanol and formaldehyde selectivities, respectively. The catalytic activity was changed with the content of Mn and the calcination temperature. Catalytic activity increased with the specific surface areas of the catalysts. With XRD, it was found that the structure of the catalysts are changed with calcination temperature. Through O2-TPD experiment, it was found that the catalysts showing good catalytic activity showed O2 desorption peak around 800℃.
        4,000원