검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        With the development of modern science and technology, weapon systems such as tanks, submarines, combat planes, radar are also dramatically advanced. Among these weapon systems, the ballistic missile, one of the asymmetric forces, could be considered as a very economical means to attack the core facilities of the other country in order to achieve the strategic goals of the country during the war. Because of the current ballistic missile threat from the North Korea, establishing a missile defense (MD) system becomes one of the major national defense issues. This study focused on the optimization of air defense artillery units’ deployment for effective ballistic missile defense. To optimize the deployment of the units, firstly this study examined the possibility of defense, according to the presence of orbital coordinates of ballistic missiles in the limited defense range of air defense artillery units. This constraint on the defense range is originated from the characteristics of anti-ballistic missiles (ABMs) such as PATRIOT. Secondly, this study proposed the optimized mathematical model considering the total covering problem of binary integer programming, as an optimal deployment of air defense artillery units for defending every core defense facility with the least number of such units. Finally, numerical experiments were conducted to show how the suggested approach works. Assuming the current state of the Korean peninsula, the study arbitrarily set ballistic missile bases of the North Korea and core defense facilities of the South Korea. Under these conditions, numerical experiments were executed by utilizing MATLAB R2010a of the MathWorks, Inc.
        4,000원
        2.
        2009.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study investigates GaAs dry etching in capacitively coupled BCl3/N2 plasma at a low vacuum pressure (>100 mTorr). The applied etch process parameters were a RIE chuck power ranging from 100~200W on the electrodes and a N2 composition ranging from 0~100% in BCl3/N2 plasma mixtures. After the etch process, the etch rates, RMS roughness and etch selectivity of the GaAs over a photoresist was investigated. Surface profilometry and field emission-scanning electron microscopy were used to analyze the etch characteristics of the GaAs substrate. It was found that the highest etch rate of GaAs was 0.4μm/min at a 20 % N2 composition in BCl3/N2 (i.e., 16 sccm BCl3/4 sccm N2). It was also noted that the etch rate of GaAs was 0.22μm/min at 20 sccm BCl3 (100 % BCl3). Therefore, there was a clear catalytic effect of N2 during the BCl3/N2 plasma etching process. The RMS roughness of GaAs after etching was very low (~3nm) when the percentage of N2 was 20 %. However, the surface roughness became rougher with higher percentages of N2.
        4,000원
        3.
        2009.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study investigated dry etching of acrylic in capacitively coupled SF6, SF6/O2 and SF6/CH4 plasma under a low vacuum pressure. The process pressure was 100 mTorr and the total gas flow rate was fixed at 10 sccm. The process variables were the RIE chuck power and the plasma gas composition. The RIE chuck power varied in the range of 25~150 W. SF6/O2 plasma produced higher etch rates of acrylic than pure SF6 and O2 at a fixed total flow rate. 5 sccm SF6/5 sccm O2 provided 0.11μm/min and 1.16μm/min at 25W and 150W RIE of chuck power, respectively. The results were nearly 2.9 times higher compared to those at pure SF6 plasma etching. Additionally, mixed plasma of SF6/CH4 reduced the etch rate of acrylic. 5 sccm SF6/5 sccm CH4 plasma resulted in 0.02μm/min and 0.07μm/min at 25W and 150W RIE of chuck power. The etch selectivity of acrylic to photoresist was higher in SF6/O2 plasma than in pure SF6 or SF6/CH4 plasma. The maximum RMS roughness (7.6 nm) of an etched acrylic surface was found to be 50% O2 in SF6/O2 plasma. Besides the process regime, the RMS roughness of acrylic was approximately 3~4 nm at different percentages of O2 with a chuck power of 100W RIE in SF6/O2 plasma etching.
        4,000원
        4.
        2007.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We investigated dry etching of acrylic (PMMA) in O2/N2 plasmas using a multi-layers electrode reactive ion etching (RIE) system. The multi-layers electrode RIE system had an electrode (or a chuck) consisted of 4 individual layers in a series. The diameter of the electrodes was 150 mm. The etch process parameters we studied were both applied RIE chuck power on the electrodes and % O2 composition in the N2/O2 plasma mixtures. In details, the RIE chuck power was changed from 75 to 200 W.% O2 in the plasmas was varied from 0 to 100% at the fixed total gas flow rates of 20 sccm. The etch results of acrylic in the multilayers electrode RIE system were characterized in terms of negatively induced dc bias on the electrode, etch rates and RMS surface roughness. Etch rate of acrylic was increased more than twice from about 0.2μm/min to over 0.4μm/min when RIE chuck power was changed from 75 to 200 W. 1 sigma uniformity of etch rate variation of acrylic on the 4 layers electrode was slightly increased from 2.3 to 3.2% when RIE chuck power was changed from 75 to 200 W at the fixed etch condition of 16 sccm O2/4 sccm N2 gas flow and 100 mTorr chamber pressure. Surface morphology was also investigated using both a surface profilometry and scanning electron microscopy (SEM). The RMS roughness of etched acrylic surface was strongly affected by % O2 composition in the O2/N2 plasmas. However, RIE chuck power changes hardly affected the roughness results in the range of 75-200 W. During etching experiment, Optical Emission Spectroscopy (OES) data was taken and we found both N2 peak (354.27 nm) and O2 peak (777.54 nm). The preliminarily overall results showed that the multi-layers electrode concept could be successfully utilized for high volume reactive ion etching of acrylic in the future.
        4,000원