검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2013.09 구독 인증기관 무료, 개인회원 유료
        Ultra high performance concrete which has recently been studied was developed to complement the brittle behaviour and dynamic uppermost limit of high strength concrete. Fiber reinforced concrete which mixed steel fiber is receiving attention as an alternative about this and is being developed to complement the disadvantages of high strength concrete including lower toughness coefficients and crack resistance and spalling in fires. Review about fiber reinforced ultra high strength concrete that this study tries to treat includes reduction of self shrinkage generated by high cement content per unit volume of concrete, evaluation of compression and tension strength to lower internal and external spalling resistance and fragility factors of member of framework, and flow characteristics of concrete which doesn't harden according to steel fiber amounts and used materials. As the result, the more fiber reinforcement increases, the more compression and tensile strength increase and deformation control of cement matrix and improvement of energy absorption ability showed the great effect in shrinkage reduction.
        4,000원
        2.
        2011.03 구독 인증기관 무료, 개인회원 유료
        In case of general concrete, autogenous shrinkage is about 10% of the drying shrinkage. Therefore it was not considered significant to be a subject matter about managing the crack control and design. It was reported that cracks can be generated from the autogenous shrinkage. Because of the low W/B rate and the high unit binder of the high strength concrete. In this study, autogenous shrinkage and drying shrinkage are examined which is the main reason of the cracks of the high strength concrete based on the previous studies. Comparing the data from this study and previous studies, we developed the shrinkage reduced concrete using shrinkage reducing agent. The purpose of this study is to provide the data for reducing and managing the column shortening of the high strength concrete structures.
        4,000원
        3.
        2011.03 구독 인증기관 무료, 개인회원 유료
        In this study, prediction of later-age compressive strength of ultra-high strength concrete, based on the accelerated strength of concrete cured in hot water was investigated. Comparing other acceleration method, hot water curing method is relatively easy and intuitive to use in the real construction site. The amount of time for evaluation of the concrete strength using the hot water curing method in KS and JIS is too long to predict the strength of the ultra-high strength concrete that are used in the tall building structure. For that reason, curing temperature of 40, 50, 60˚c 3 levels were examined to shorten the amount of time for the evaluation of the strength. As a result, the feasibility of the three days hot water curing method was confirmed.
        4,000원
        4.
        2009.09 구독 인증기관 무료, 개인회원 유료
        As architectures have recently become high-risers and mega-structured, stable high strength products have been ensured. Accordingly, use of precast concrete accouplement has been increased in order to facilitate air compression and rationalize construction. Since external rising by the steam heating and internal rising by the accumulation of cement hydration heat for the temperature of members, precast concrete members with large cross-section used for high-rise mega-structure's columns and beams may exhibit different temperature history compared to the precast concrete members for wall and sub-floor with relatively small cross-sections. Therefore, this study aims to elucidate the characteristics of temperature history of mass concrete members cast with high-strength concrete for precast concrete application. In this study, large cross-sectional precast concrete mock-up, unit cement quantity, and temperature histories in manufacturing precast concrete member under different curing condition were inclusively investigated.
        4,000원
        5.
        2009.03 구독 인증기관 무료, 개인회원 유료
        Precast concrete produced in the industry is advantageous in a sense that it meets certain requiring standards and thus is easy to manage, and it saves construction period by shortening concrete curing time in the field. Nevertheless, studies on the strength evaluation of PC material by steam curing have rarely been done. In addition,as concrete becomes of high strength, it is speculated that relevant steam curing temperature history is also required. Therefore this study is on the steam curing method in manufacturing precast concrete products, and cement mortar has been used for experiments to exclude the possibility that concrete aggregate granularity and aggregate shape change may affect on strength development by cement hydration. In addition, this research is to provide the fundamental information of industrial manufacture of PC member by suggesting the optimal steam curing condition. The optimal steam curing condition has been investigated from the relations between temperature history condition and strength development, via modifying temperature patterns in various ways such as pre-tirne, curing maximaI temperature, maximaI temperature maintenance time which are factors that affect on high strength concrete product in steam curing.
        4,000원
        6.
        2009.03 구독 인증기관 무료, 개인회원 유료
        An evaluation of the concrete strength has very important meaning in the maintenance and the structural safety. The reliability of ferroconcrete building is weakening and enlarging the life is strongly demanded due to the early deterioration of concrete. Like this social demand, concrete strength presumption is being indirectly executed using the result in parallel with the concrete pouring by material age. This data is usually different as concrete poured practically and the way of hardening and curing. Although existing concrete strength presumption formula is proposed, the material used and the concrete strength is different. And as a matter of remicon, the concrete strength varies according to the site and the way of curing. So the objective of this research is strength evaluation of the structural body concrete according to the concrete pouring and curing temperature change seasonally after using the system which evaluates the structural body concrete strength which is applied the transparent junction-separation mold that is presented. Also there is an objective to present the fundamental data for the constructional quality technique proposal of the structural body concrete developed in relation to field specimen and the strength evaluation method by non-breaking.
        4,000원